Research of oil polluted soil and vegetation cover grown in laboratory by hyperspectral remote sensing method using the ASD FieldSpec 3FR Spectroradiometer
G. Zholobak, S. Dugin, O. Sybirtseva, Yelizaveta Dorofey
{"title":"Research of oil polluted soil and vegetation cover grown in laboratory by hyperspectral remote sensing method using the ASD FieldSpec 3FR Spectroradiometer","authors":"G. Zholobak, S. Dugin, O. Sybirtseva, Yelizaveta Dorofey","doi":"10.36023/ujrs.2018.19.141","DOIUrl":null,"url":null,"abstract":"The development of oil extraction and refining industry causes the environment pollution primarily the aquatic and terrestrial ecosystems. The vegetation and soils as the components of terrestrial ecosystems expose to oil pollution especially. The research of oil-polluted soil and vegetation cover grown in laboratory by hyperspectral remote sensing method using the ASD FieldSpec® 3FR spectroradiometer is performed. The vegetation cover of spring cereals (wheat, barley, and corn) is formed by the growing in the containers with soil. The hyperspectral vegetation indices together with the reflectance in the red edge of spectrum (ТСІ, GrNDVI and REP) are the higher values for corn cover in comparison with the different spring small grain cereals. The additional dose of oil applied in the polluted soils from the Staryi Sambir oil deposit induces the reduction in the values of above-mentioned vegetation indices for the every spring crop of interest. The research of oil-polluted soil and vegetation cover grown in laboratory by hyperspectral remote sensing method using the ASD FieldSpec 3FR spectroradiometer is performed. The vegetation cover of spring cereals (wheat, barley, and corn) is formed by the growing in the containers with the different soils. The hyperspectral vegetation indices together with the reflectance in the red edge of spectrum (ТСІ, GrNDVI and REP) are the higher values for corn cover in comparison with the different spring small grain cereals. The additional dose of oil applied in the polluted soils from the Staryi Sambir oil deposit induces the reduction in the values of above-mentioned vegetation indices for the every spring crop of interest. Accumulated GrNDVI values for the corn and TCI for the corn and spring barley are similar to the laboratory chlorophyll content in these crops (according to the ratio of cultivation substrates). The further remote study of oil polluted soils and their influence on vegetation demands to improve the spectral measurements using satellite image data.","PeriodicalId":113561,"journal":{"name":"Ukrainian journal of remote sensing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian journal of remote sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36023/ujrs.2018.19.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of oil extraction and refining industry causes the environment pollution primarily the aquatic and terrestrial ecosystems. The vegetation and soils as the components of terrestrial ecosystems expose to oil pollution especially. The research of oil-polluted soil and vegetation cover grown in laboratory by hyperspectral remote sensing method using the ASD FieldSpec® 3FR spectroradiometer is performed. The vegetation cover of spring cereals (wheat, barley, and corn) is formed by the growing in the containers with soil. The hyperspectral vegetation indices together with the reflectance in the red edge of spectrum (ТСІ, GrNDVI and REP) are the higher values for corn cover in comparison with the different spring small grain cereals. The additional dose of oil applied in the polluted soils from the Staryi Sambir oil deposit induces the reduction in the values of above-mentioned vegetation indices for the every spring crop of interest. The research of oil-polluted soil and vegetation cover grown in laboratory by hyperspectral remote sensing method using the ASD FieldSpec 3FR spectroradiometer is performed. The vegetation cover of spring cereals (wheat, barley, and corn) is formed by the growing in the containers with the different soils. The hyperspectral vegetation indices together with the reflectance in the red edge of spectrum (ТСІ, GrNDVI and REP) are the higher values for corn cover in comparison with the different spring small grain cereals. The additional dose of oil applied in the polluted soils from the Staryi Sambir oil deposit induces the reduction in the values of above-mentioned vegetation indices for the every spring crop of interest. Accumulated GrNDVI values for the corn and TCI for the corn and spring barley are similar to the laboratory chlorophyll content in these crops (according to the ratio of cultivation substrates). The further remote study of oil polluted soils and their influence on vegetation demands to improve the spectral measurements using satellite image data.