IUI workshop on interactive machine learning

S. Amershi, M. Cakmak, W. B. Knox, Todd Kulesza, T. Lau
{"title":"IUI workshop on interactive machine learning","authors":"S. Amershi, M. Cakmak, W. B. Knox, Todd Kulesza, T. Lau","doi":"10.1145/2451176.2451230","DOIUrl":null,"url":null,"abstract":"Many applications of Machine Learning (ML) involve interactions with humans. Humans may provide input to a learning algorithm (in the form of labels, demonstrations, corrections, rankings or evaluations) while observing its outputs (in the form of feedback, predictions or executions). Although humans are an integral part of the learning process, traditional ML systems used in these applications are agnostic to the fact that inputs/outputs are from/for humans.\n However, a growing community of researchers at the intersection of ML and human-computer interaction are making interaction with humans a central part of developing ML systems. These efforts include applying interaction design principles to ML systems, using human-subject testing to evaluate ML systems and inspire new methods, and changing the input and output channels of ML systems to better leverage human capabilities. With this Interactive Machine Learning (IML) workshop at IUI 2013 we aim to bring this community together to share ideas, get up-to-date on recent advances, progress towards a common framework and terminology for the field, and discuss the open questions and challenges of IML.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Many applications of Machine Learning (ML) involve interactions with humans. Humans may provide input to a learning algorithm (in the form of labels, demonstrations, corrections, rankings or evaluations) while observing its outputs (in the form of feedback, predictions or executions). Although humans are an integral part of the learning process, traditional ML systems used in these applications are agnostic to the fact that inputs/outputs are from/for humans. However, a growing community of researchers at the intersection of ML and human-computer interaction are making interaction with humans a central part of developing ML systems. These efforts include applying interaction design principles to ML systems, using human-subject testing to evaluate ML systems and inspire new methods, and changing the input and output channels of ML systems to better leverage human capabilities. With this Interactive Machine Learning (IML) workshop at IUI 2013 we aim to bring this community together to share ideas, get up-to-date on recent advances, progress towards a common framework and terminology for the field, and discuss the open questions and challenges of IML.
交互式机器学习IUI研讨会
机器学习(ML)的许多应用涉及与人类的交互。人类可以为学习算法提供输入(以标签、演示、修正、排名或评估的形式),同时观察其输出(以反馈、预测或执行的形式)。虽然人类是学习过程中不可或缺的一部分,但在这些应用中使用的传统ML系统对输入/输出来自/用于人类这一事实是不可知的。然而,越来越多的研究人员在机器学习和人机交互的交叉领域,将与人的交互作为开发机器学习系统的核心部分。这些努力包括将交互设计原则应用于机器学习系统,使用人类受试者测试来评估机器学习系统并激发新方法,以及改变机器学习系统的输入和输出通道以更好地利用人类能力。在IUI 2013的交互式机器学习(IML)研讨会上,我们的目标是将这个社区聚集在一起,分享想法,了解最新的进展,朝着共同框架和领域术语的方向发展,并讨论IML的开放性问题和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信