Sets and functions

F. Vivaldi
{"title":"Sets and functions","authors":"F. Vivaldi","doi":"10.1201/9781482285819-3","DOIUrl":null,"url":null,"abstract":"The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions. We will not define what a set is, but take as a basic (undefined) term the idea of a set X and of membership x ∈ X (x is an element of X). The negation of x ∈ X is x / ∈ X: x is not an element of X. Typically, the elements of a set will themselves be sets, underscoring the point that, in mathematics, everything is a set. A set can be described (i) as a list {x1, . . . , xn} or (ii) by giving a description of its elements, e.g. the set of positive real numbers is described via","PeriodicalId":169934,"journal":{"name":"Experimental Mathematics with Maple","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics with Maple","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781482285819-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions. We will not define what a set is, but take as a basic (undefined) term the idea of a set X and of membership x ∈ X (x is an element of X). The negation of x ∈ X is x / ∈ X: x is not an element of X. Typically, the elements of a set will themselves be sets, underscoring the point that, in mathematics, everything is a set. A set can be described (i) as a list {x1, . . . , xn} or (ii) by giving a description of its elements, e.g. the set of positive real numbers is described via
集合和功能
集合和函数的语言遍及数学,数学中大多数重要的运算都是函数,或者可以用函数来表示。我们不定义集合是什么,而是把集合X和隶属度X∈X (X是X的一个元素)的概念作为一个基本的(未定义的)术语。X∈X的负数是X /∈X: X不是X的一个元素。通常,集合的元素本身就是集合,强调在数学中,一切都是集合。一个集合可以(i)描述为一个列表{x1,…, xn}或(ii)通过给出其元素的描述,例如,正实数集通过
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信