Thomas C. Kübler, Enkelejda Kasneci, W. Rosenstiel
{"title":"Gaze guidance for the visually impaired","authors":"Thomas C. Kübler, Enkelejda Kasneci, W. Rosenstiel","doi":"10.1145/2578153.2583038","DOIUrl":null,"url":null,"abstract":"Visual perception is perhaps the most important sensory input. During driving, about 90% of the relevant information is related to the visual input [Taylor 1982]. However, the quality of visual perception decreases with age, mainly related to a reduce in the visual acuity or in consequence of diseases affecting the visual system. Amongst the most severe types of visual impairments are visual field defects (areas of reduced perception in the visual field), which occur as a consequence of diseases affecting the brain, e.g., stroke, brain injury, trauma, or diseases affecting the optic nerve, e.g., glaucoma. Due to demographic aging, the number of people with such visual impairments is expected to rise [Kasneci 2013]. Since persons suffering from visual impairments may overlook hazardous objects, they are prohibited from driving. This, however, leads to a decrease in quality of life, mobility, and participation in social life. Several studies have shown that some patients show a safe driving behavior despite their visual impairment by performing effective visual exploration, i.e., adequate eye and head movements (e.g., towards their visual field defect [Kasneci et al. 2014b]). Thus, a better understanding of visual perception mechanisms, i.e., of why and how we attend certain parts of our environment while \"ignoring\" others, is a key question to helping visually impaired persons in complex, real-life tasks, such as driving a car.","PeriodicalId":142459,"journal":{"name":"Proceedings of the Symposium on Eye Tracking Research and Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2578153.2583038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Visual perception is perhaps the most important sensory input. During driving, about 90% of the relevant information is related to the visual input [Taylor 1982]. However, the quality of visual perception decreases with age, mainly related to a reduce in the visual acuity or in consequence of diseases affecting the visual system. Amongst the most severe types of visual impairments are visual field defects (areas of reduced perception in the visual field), which occur as a consequence of diseases affecting the brain, e.g., stroke, brain injury, trauma, or diseases affecting the optic nerve, e.g., glaucoma. Due to demographic aging, the number of people with such visual impairments is expected to rise [Kasneci 2013]. Since persons suffering from visual impairments may overlook hazardous objects, they are prohibited from driving. This, however, leads to a decrease in quality of life, mobility, and participation in social life. Several studies have shown that some patients show a safe driving behavior despite their visual impairment by performing effective visual exploration, i.e., adequate eye and head movements (e.g., towards their visual field defect [Kasneci et al. 2014b]). Thus, a better understanding of visual perception mechanisms, i.e., of why and how we attend certain parts of our environment while "ignoring" others, is a key question to helping visually impaired persons in complex, real-life tasks, such as driving a car.