Learning from power system data stream

Mauro Escobar, D. Bienstock, M. Chertkov
{"title":"Learning from power system data stream","authors":"Mauro Escobar, D. Bienstock, M. Chertkov","doi":"10.1109/PTC.2019.8810950","DOIUrl":null,"url":null,"abstract":"Assuming access to synchronized stream of Phasor Measurement Unit (PMU) data over a significant portion of a power system interconnect, say controlled by an Independent System Operator (ISO), what can you extract about past, current and future state of the system? We have focused on answering these practical questions pragmatically _ empowered with nothing but standard tools of data analysis, such as PCA, filtering and cross-correlation analysis. Quite surprisingly we have found that even during quiet “no significant events” periods this standard set of statistical tools allows the “phasor-detective” to extract from the data important hidden anomalies, such as problematic control loops at loads and wind farms, and mildly malfunctioning assets, such as transformers and generators.","PeriodicalId":187144,"journal":{"name":"2019 IEEE Milan PowerTech","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Milan PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2019.8810950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Assuming access to synchronized stream of Phasor Measurement Unit (PMU) data over a significant portion of a power system interconnect, say controlled by an Independent System Operator (ISO), what can you extract about past, current and future state of the system? We have focused on answering these practical questions pragmatically _ empowered with nothing but standard tools of data analysis, such as PCA, filtering and cross-correlation analysis. Quite surprisingly we have found that even during quiet “no significant events” periods this standard set of statistical tools allows the “phasor-detective” to extract from the data important hidden anomalies, such as problematic control loops at loads and wind farms, and mildly malfunctioning assets, such as transformers and generators.
从电力系统数据流中学习
假设在电力系统互连的很大一部分上,例如由独立系统操作员(ISO)控制的相量测量单元(PMU)数据的同步流可以访问,那么您可以从系统的过去、当前和未来状态中提取什么?我们专注于以务实的方式回答这些实际问题——只使用标准的数据分析工具,如PCA、过滤和相互关联分析。令人惊讶的是,我们发现,即使在安静的“无重大事件”期间,这组标准的统计工具也允许“相量检测”从数据中提取出重要的隐藏异常,例如负载和风力发电场有问题的控制回路,以及变压器和发电机等轻度故障资产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信