Modeling Cloud performance with Kriging

Alessio Gambi, G. T. Carughi
{"title":"Modeling Cloud performance with Kriging","authors":"Alessio Gambi, G. T. Carughi","doi":"10.1109/ICSE.2012.6227075","DOIUrl":null,"url":null,"abstract":"Cloud infrastructures allow service providers to implement elastic applications. These can be scaled at runtime to dynamically adjust their resources allocation to maintain consistent quality of service in response to changing working conditions, like flash crowds or periodic peaks. Providers need models to predict the system performances of different resource allocations to fully exploit dynamic application scaling. Traditional performance models such as linear models and queueing networks might be simplistic for real Cloud applications; moreover, they are not robust to change. We propose a performance modeling approach that is practical for highly variable elastic applications in the Cloud and automatically adapts to changing working conditions. We show the effectiveness of the proposed approach for the synthesis of a self-adaptive controller.","PeriodicalId":420187,"journal":{"name":"2012 34th International Conference on Software Engineering (ICSE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 34th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2012.6227075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Cloud infrastructures allow service providers to implement elastic applications. These can be scaled at runtime to dynamically adjust their resources allocation to maintain consistent quality of service in response to changing working conditions, like flash crowds or periodic peaks. Providers need models to predict the system performances of different resource allocations to fully exploit dynamic application scaling. Traditional performance models such as linear models and queueing networks might be simplistic for real Cloud applications; moreover, they are not robust to change. We propose a performance modeling approach that is practical for highly variable elastic applications in the Cloud and automatically adapts to changing working conditions. We show the effectiveness of the proposed approach for the synthesis of a self-adaptive controller.
用Kriging建模云性能
云基础设施允许服务提供商实现弹性应用程序。这些可以在运行时进行扩展,以动态调整其资源分配,以保持一致的服务质量,以响应不断变化的工作条件,如快速人群或周期性高峰。提供商需要模型来预测不同资源分配的系统性能,以充分利用动态应用程序扩展。传统的性能模型,如线性模型和排队网络,对于真正的云应用程序来说可能过于简单;此外,它们对变化的抵抗力也不强。我们提出了一种性能建模方法,该方法适用于云中高度可变的弹性应用程序,并自动适应不断变化的工作条件。我们证明了该方法对于自适应控制器的合成是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信