{"title":"End-to-end versus explicit feedback measurement in 802.11 networks","authors":"M. Kazantzidis, M. Gerla","doi":"10.1109/ISCC.2002.1021711","DOIUrl":null,"url":null,"abstract":"Higher layer protocols in wireless networks need to dynamically adapt to observed network response. The common approach is that each session employs end-to-end monitoring to estimate quantities of interest, like delay, delay jitter and available bandwidth. A less conventional approach is to employ lower layer explicit feedback mechanisms in place or in aid of end-to-end efforts. Available bandwidth measurements are known to follow multi-modal distributions and therefore are especially difficult to measure and filter, even in wired networks. In 802.11-based multi-hop networks obtaining usable end-to-end measurements is questionable. They are affected by a combination of a large number of transient variables due to the virtual carrier sense, head of line problems on each link and mobility. Motivated by this, we are developing a network explicit feedback mechanism. Our study of this accurate network feedback architecture aids in the cost/benefit analysis of an important trade-off: deployment of network support mechanisms for transports and QoS, versus the simple, scalable and easily deployable end-to-end solution. We test our solution in: (i) multimedia adaptation and (ii) measurement based call admission. Loss rates of end-to-end adaptive video and audio connections have been more than 4 times higher than in the network feedback case. A simple call admission strategy has also proved very effective using the feedback. In our experiments it led the network to a maximal performance and stable operating point.","PeriodicalId":261743,"journal":{"name":"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2002.1021711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
Higher layer protocols in wireless networks need to dynamically adapt to observed network response. The common approach is that each session employs end-to-end monitoring to estimate quantities of interest, like delay, delay jitter and available bandwidth. A less conventional approach is to employ lower layer explicit feedback mechanisms in place or in aid of end-to-end efforts. Available bandwidth measurements are known to follow multi-modal distributions and therefore are especially difficult to measure and filter, even in wired networks. In 802.11-based multi-hop networks obtaining usable end-to-end measurements is questionable. They are affected by a combination of a large number of transient variables due to the virtual carrier sense, head of line problems on each link and mobility. Motivated by this, we are developing a network explicit feedback mechanism. Our study of this accurate network feedback architecture aids in the cost/benefit analysis of an important trade-off: deployment of network support mechanisms for transports and QoS, versus the simple, scalable and easily deployable end-to-end solution. We test our solution in: (i) multimedia adaptation and (ii) measurement based call admission. Loss rates of end-to-end adaptive video and audio connections have been more than 4 times higher than in the network feedback case. A simple call admission strategy has also proved very effective using the feedback. In our experiments it led the network to a maximal performance and stable operating point.