An Investigation of Pixel-Based and Object-Based Image Classification in Remote Sensing

M. Younis, E. Keedwell, D. Savić
{"title":"An Investigation of Pixel-Based and Object-Based Image Classification in Remote Sensing","authors":"M. Younis, E. Keedwell, D. Savić","doi":"10.1109/ICOASE.2018.8548845","DOIUrl":null,"url":null,"abstract":"This research evaluates pixel-based and object-based image classification techniques for extracting three land-use categories (buildings, roads, and vegetation areas) from six satellite images. The performance of eight supervised machine learning classifiers with 5-fold cross validation are also compared. Experimental validation found that using 'Bagged Tree' for object-based classification algorithms provides maximum overall accuracy when tested on 10,000 objects produced by the SLIC segmentation method, and improves upon an existing RGB-based approach. Our aforementioned proposed approach takes about 12 times less total runtime than the pixel-based method, demonstrating the power of the combined approach.","PeriodicalId":144020,"journal":{"name":"2018 International Conference on Advanced Science and Engineering (ICOASE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE.2018.8548845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This research evaluates pixel-based and object-based image classification techniques for extracting three land-use categories (buildings, roads, and vegetation areas) from six satellite images. The performance of eight supervised machine learning classifiers with 5-fold cross validation are also compared. Experimental validation found that using 'Bagged Tree' for object-based classification algorithms provides maximum overall accuracy when tested on 10,000 objects produced by the SLIC segmentation method, and improves upon an existing RGB-based approach. Our aforementioned proposed approach takes about 12 times less total runtime than the pixel-based method, demonstrating the power of the combined approach.
基于像元和基于地物的遥感图像分类研究
本研究评估了基于像素和基于目标的图像分类技术,用于从六张卫星图像中提取三种土地利用类别(建筑物,道路和植被区域)。还比较了8种具有5重交叉验证的监督机器学习分类器的性能。实验验证发现,在使用SLIC分割方法生成的10,000个对象上进行测试时,使用“Bagged Tree”用于基于对象的分类算法提供了最大的整体准确性,并且改进了现有的基于rgb的方法。我们前面提到的方法比基于像素的方法减少了大约12倍的总运行时间,展示了组合方法的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信