An improved online multiple kernel classification algorithm based on double updating online learning

Y. Xiao, Shangping Zhong
{"title":"An improved online multiple kernel classification algorithm based on double updating online learning","authors":"Y. Xiao, Shangping Zhong","doi":"10.1109/CCIOT.2014.7062516","DOIUrl":null,"url":null,"abstract":"Online multiple kernel classification(OMKC) algorithm is a promising algorithm in machine learning. Because of low error rate and relatively fast training time, it has been sucessfully applied to many real-world problems. However, in the phase of learning a single classifier for a given kernel, the OMKC adopts the perceptron algorithm, which significantly limits the performance of the algorithm. In this paper, we adopts the double updating online learning(DUOL) algorithm to learn the single classifier. Comparing to the perceptron algorithm, the DUOL algorithm not only assigns a weight to the misclassified example, but also updates the weight for one of the existing support vectors, which significantly improves the classification performance. Then we use the hedge algorithm to combines these classifiers. The experimental results show that the proposed algorithm is more effective than the OMKC algorithm, the state-of-the-art algorithms, and single kernel learning algorithm.","PeriodicalId":255477,"journal":{"name":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIOT.2014.7062516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Online multiple kernel classification(OMKC) algorithm is a promising algorithm in machine learning. Because of low error rate and relatively fast training time, it has been sucessfully applied to many real-world problems. However, in the phase of learning a single classifier for a given kernel, the OMKC adopts the perceptron algorithm, which significantly limits the performance of the algorithm. In this paper, we adopts the double updating online learning(DUOL) algorithm to learn the single classifier. Comparing to the perceptron algorithm, the DUOL algorithm not only assigns a weight to the misclassified example, but also updates the weight for one of the existing support vectors, which significantly improves the classification performance. Then we use the hedge algorithm to combines these classifiers. The experimental results show that the proposed algorithm is more effective than the OMKC algorithm, the state-of-the-art algorithms, and single kernel learning algorithm.
基于双更新在线学习的改进在线多核分类算法
在线多核分类(OMKC)算法是一种很有前途的机器学习算法。由于误差率低,训练时间相对较快,已成功应用于许多现实问题。然而,在为给定核学习单个分类器的阶段,OMKC采用感知机算法,这极大地限制了算法的性能。本文采用双更新在线学习(DUOL)算法对单个分类器进行学习。与感知器算法相比,DUOL算法不仅为错误分类的样例分配了权重,而且还更新了现有支持向量的权重,显著提高了分类性能。然后我们使用对冲算法来组合这些分类器。实验结果表明,该算法比OMKC算法、最先进的算法和单核学习算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信