Identification of Ghost Moving Detections in Automotive Scenarios with Deep Learning

Javier Martínez García, Robert Prophet, Juan Carlos Fuentes Michel, R. Ebelt, M. Vossiek, Ingo Weber
{"title":"Identification of Ghost Moving Detections in Automotive Scenarios with Deep Learning","authors":"Javier Martínez García, Robert Prophet, Juan Carlos Fuentes Michel, R. Ebelt, M. Vossiek, Ingo Weber","doi":"10.1109/ICMIM.2019.8726704","DOIUrl":null,"url":null,"abstract":"We introduce a method to classify ghost moving detections in automotive radar sensors for advanced driver assistance systems. A fully connected network is used to distinguish between real and false moving detections in the occupancy gridmaps. By using this architecture, we combine the local Doppler information, along with the spatial context of the surrounding scenario to classify the moving detections. A proof of concept experiment shows promising results with data from a test drive in an urban scenario.","PeriodicalId":225972,"journal":{"name":"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM.2019.8726704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We introduce a method to classify ghost moving detections in automotive radar sensors for advanced driver assistance systems. A fully connected network is used to distinguish between real and false moving detections in the occupancy gridmaps. By using this architecture, we combine the local Doppler information, along with the spatial context of the surrounding scenario to classify the moving detections. A proof of concept experiment shows promising results with data from a test drive in an urban scenario.
基于深度学习的汽车场景幽灵运动检测识别
介绍了一种用于高级驾驶辅助系统的汽车雷达传感器中鬼魂运动检测的分类方法。利用全连通网络来区分占用网格图中运动检测的真假。通过使用该架构,我们结合局部多普勒信息以及周围场景的空间背景来对运动检测进行分类。一项概念验证实验显示,在城市场景中进行的试驾数据显示出了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信