Classification of Egyptian Fruit Bat Calls with Deep Learning Methods

Dogukan Mesci, Anil Koluacik, B. Yılmaz, Melih Sen, E. Masazade, V. Beskardes
{"title":"Classification of Egyptian Fruit Bat Calls with Deep Learning Methods","authors":"Dogukan Mesci, Anil Koluacik, B. Yılmaz, Melih Sen, E. Masazade, V. Beskardes","doi":"10.1109/SIU55565.2022.9864713","DOIUrl":null,"url":null,"abstract":"Bats are of great importance for the survival of all living beings and for biodiversity. This study aims to classify the collective calls of the Egyptian fruit bat, whose northernmost distribution is in Turkey, using deep learning methods CNN and LSTM and utilizing MFCC (Mel Frequency Cepstral Coefficients) features. Thanks to the classification of species-specific calls, it is possible to observe the habitat preference, social relations, foraging, reproduction, mobility and migration of the species. The classification results obtained in this study provide significant increases compared to the previous study, especially in distinguishing certain calls.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Bats are of great importance for the survival of all living beings and for biodiversity. This study aims to classify the collective calls of the Egyptian fruit bat, whose northernmost distribution is in Turkey, using deep learning methods CNN and LSTM and utilizing MFCC (Mel Frequency Cepstral Coefficients) features. Thanks to the classification of species-specific calls, it is possible to observe the habitat preference, social relations, foraging, reproduction, mobility and migration of the species. The classification results obtained in this study provide significant increases compared to the previous study, especially in distinguishing certain calls.
埃及果蝠叫声的深度学习分类
蝙蝠对所有生物的生存和生物多样性至关重要。本研究旨在利用深度学习方法CNN和LSTM,利用Mel Frequency Cepstral Coefficients特征,对分布在土耳其最北的埃及果蝠的集体鸣叫进行分类。由于对物种特有的叫声进行了分类,因此有可能观察到物种的栖息地偏好、社会关系、觅食、繁殖、迁移和迁徙。与以往的研究相比,本研究获得的分类结果有了显著的提高,特别是在区分某些叫声方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信