Polynomial Somos sequences II

M. Romanov
{"title":"Polynomial Somos sequences II","authors":"M. Romanov","doi":"10.47910/femj202209","DOIUrl":null,"url":null,"abstract":"It was proved in [1] that for $k=4,5,6,7$ the elements of the Somos-$k$ sequence defined by the recurrence $$S_k(n+k)S_k(n)=\\sum_{1\\leqslant i\\leqslant k/2}\\alpha_i x_0\\dots x_{k-1}S_k(n+k-i)S_k(n+i)$$ and initial values $S_k(j)=x_j$ ($j=0,\\dots,k-1$) are polynomials in the variables $x_0,\\dots,x_{k-1}$. The unit powers of the variables $x_j$ in the factors \\linebreak $\\alpha_i x_0\\dots x_{k-1}$ can be reduced. In this paper, we find the smallest values of these powers, at which the polynomiality of the above sequence is preserved.","PeriodicalId":388451,"journal":{"name":"Dal'nevostochnyi Matematicheskii Zhurnal","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dal'nevostochnyi Matematicheskii Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47910/femj202209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It was proved in [1] that for $k=4,5,6,7$ the elements of the Somos-$k$ sequence defined by the recurrence $$S_k(n+k)S_k(n)=\sum_{1\leqslant i\leqslant k/2}\alpha_i x_0\dots x_{k-1}S_k(n+k-i)S_k(n+i)$$ and initial values $S_k(j)=x_j$ ($j=0,\dots,k-1$) are polynomials in the variables $x_0,\dots,x_{k-1}$. The unit powers of the variables $x_j$ in the factors \linebreak $\alpha_i x_0\dots x_{k-1}$ can be reduced. In this paper, we find the smallest values of these powers, at which the polynomiality of the above sequence is preserved.
多项式Somos序列II
在[1]中证明了对于$k=4,5,6,7$,由递归式$$S_k(n+k)S_k(n)=\sum_{1\leqslant i\leqslant k/2}\alpha_i x_0\dots x_{k-1}S_k(n+k-i)S_k(n+i)$$和初值$S_k(j)=x_j$ ($j=0,\dots,k-1$)定义的Somos- $k$序列的元素在变量$x_0,\dots,x_{k-1}$中是多项式。因子\linebreak$\alpha_i x_0\dots x_{k-1}$中变量$x_j$的单位幂可以降低。在本文中,我们找到了这些幂的最小值,在这个最小值下,上述序列的多项式性保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信