A gestural instruction learning robot using information infrastructure

T. Yamaguchi, N. Kanazawa, K. Akita, M. Yoshihara
{"title":"A gestural instruction learning robot using information infrastructure","authors":"T. Yamaguchi, N. Kanazawa, K. Akita, M. Yoshihara","doi":"10.1109/FUZZY.1995.410049","DOIUrl":null,"url":null,"abstract":"This paper proposes a gestural instruction learning algorithm for robots which move in response to video information. Applying the algorithm to an actual moving robot in a trajectory learning experiment confirms that it enables a robot to understand, on the same level that a dog might, both the meaning of a human macro sign (i.e. a figure-eight sign) and the qualitative sense inherent in a human macro qualitative instruction (i.e. a figure-eight trajectory with a large width). The proposed algorithm refines the robot moving trajectory through the use of a fuzzy associative memory system. It is demonstrated that the use of macro qualitative instructions in the proposed algorithm enables trajectory learning to be attained more quickly than with the use of micro instructions in a conventional algorithm.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.410049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a gestural instruction learning algorithm for robots which move in response to video information. Applying the algorithm to an actual moving robot in a trajectory learning experiment confirms that it enables a robot to understand, on the same level that a dog might, both the meaning of a human macro sign (i.e. a figure-eight sign) and the qualitative sense inherent in a human macro qualitative instruction (i.e. a figure-eight trajectory with a large width). The proposed algorithm refines the robot moving trajectory through the use of a fuzzy associative memory system. It is demonstrated that the use of macro qualitative instructions in the proposed algorithm enables trajectory learning to be attained more quickly than with the use of micro instructions in a conventional algorithm.<>
使用信息基础设施的手势指令学习机器人
针对机器人对视频信息的响应,提出了一种手势指令学习算法。将该算法应用到实际移动机器人的轨迹学习实验中,证实了它使机器人能够在与狗相同的水平上理解人类宏观符号(即数字8符号)的含义和人类宏观定性指令(即大宽度的数字8轨迹)固有的定性意义。该算法通过使用模糊联想记忆系统来细化机器人的运动轨迹。结果表明,与传统算法中使用微指令相比,在所提出的算法中使用宏观定性指令可以更快地获得轨迹学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信