Automated labeling of segmented hyperspectral imagery via spectral matching

B. Bue, E. Merényi, B. Csathó
{"title":"Automated labeling of segmented hyperspectral imagery via spectral matching","authors":"B. Bue, E. Merényi, B. Csathó","doi":"10.1109/WHISPERS.2009.5289092","DOIUrl":null,"url":null,"abstract":"Despite recent advances in hyperspectral image processing, automated material identification from hyperspectral image data is still an unsolved problem. In this work, we develop a technique for labeling hyperspectral imagery, which leverages segmented image data and a library of spectral signatures of materials. We define a new spectral similarity measure that considers continuum removed spectra in addition to continuum intact reflectance spectra. We show that using both of these characteristics in similarity analysis yields improved results over recently proposed similarity measures. Analysis on an AVIRIS image of an urban scene is presented.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Despite recent advances in hyperspectral image processing, automated material identification from hyperspectral image data is still an unsolved problem. In this work, we develop a technique for labeling hyperspectral imagery, which leverages segmented image data and a library of spectral signatures of materials. We define a new spectral similarity measure that considers continuum removed spectra in addition to continuum intact reflectance spectra. We show that using both of these characteristics in similarity analysis yields improved results over recently proposed similarity measures. Analysis on an AVIRIS image of an urban scene is presented.
通过光谱匹配实现分割高光谱图像的自动标注
尽管近年来在高光谱图像处理方面取得了进展,但从高光谱图像数据中自动识别材料仍然是一个未解决的问题。在这项工作中,我们开发了一种标记高光谱图像的技术,该技术利用了分割图像数据和材料的光谱特征库。我们定义了一种新的光谱相似度度量,除了考虑连续统完整反射光谱外,还考虑了连续统去除光谱。我们表明,在相似性分析中使用这两个特征比最近提出的相似性度量产生更好的结果。对城市场景的AVIRIS图像进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信