Biometric face classification with the hybridised rough neural network

K. Sasirekha, K. Thangavel
{"title":"Biometric face classification with the hybridised rough neural network","authors":"K. Sasirekha, K. Thangavel","doi":"10.1504/ijbm.2020.10029788","DOIUrl":null,"url":null,"abstract":"Biometric face classification is an important indexing scheme to reduce face matching time for large volumes of a database. In this paper, a hybridised approach based on rough set theory (RST) and back propagation neural network (BPN) to classify human face is proposed. Local binary pattern (LBP) method is exploited to extract the features from pre-processed face images. The evolutionary optimisation algorithms such as genetic algorithm (GA), particle swarm optimisation (PSO), ant colony optimisation (ACO), hybridisation of ACO and GA (ACO-GA) and hybridisation of PSO and GA (PSO-GA) are investigated for feature selection. Finally, the hybridised rough neural network (RNN) is employed for classification. The experimental results of the proposed RNN is compared in terms of precision, recall, f-measure, accuracy and error rate with Naive Bayes, support vector machine (SVM), radial basis function network (RBFN), conventional BPN, and convolutional neural network (CNN) to conclude the efficacy of the proposed approach.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbm.2020.10029788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Biometric face classification is an important indexing scheme to reduce face matching time for large volumes of a database. In this paper, a hybridised approach based on rough set theory (RST) and back propagation neural network (BPN) to classify human face is proposed. Local binary pattern (LBP) method is exploited to extract the features from pre-processed face images. The evolutionary optimisation algorithms such as genetic algorithm (GA), particle swarm optimisation (PSO), ant colony optimisation (ACO), hybridisation of ACO and GA (ACO-GA) and hybridisation of PSO and GA (PSO-GA) are investigated for feature selection. Finally, the hybridised rough neural network (RNN) is employed for classification. The experimental results of the proposed RNN is compared in terms of precision, recall, f-measure, accuracy and error rate with Naive Bayes, support vector machine (SVM), radial basis function network (RBFN), conventional BPN, and convolutional neural network (CNN) to conclude the efficacy of the proposed approach.
基于混合粗糙神经网络的生物特征人脸分类
生物特征人脸分类是减少海量数据库人脸匹配时间的重要索引方案。提出了一种基于粗糙集理论(RST)和反向传播神经网络(BPN)的混合人脸分类方法。利用局部二值模式(LBP)方法从预处理后的人脸图像中提取特征。研究了遗传算法(GA)、粒子群算法(PSO)、蚁群算法(ACO)、蚁群算法与遗传算法杂交(ACO-GA)、粒子群算法与遗传算法杂交(PSO-GA)等进化优化算法进行特征选择。最后,采用混合粗糙神经网络(RNN)进行分类。实验结果与朴素贝叶斯、支持向量机(SVM)、径向基函数网络(RBFN)、传统BPN和卷积神经网络(CNN)在精密度、召回率、f-measure、准确度和错误率等方面进行了比较,得出了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信