Optimization of PV Energy Conversion System Using Reinforcement Learning Algorithm

M. A. Zeddini, Mourad Turki, Mohamed Faouzi Mimoun
{"title":"Optimization of PV Energy Conversion System Using Reinforcement Learning Algorithm","authors":"M. A. Zeddini, Mourad Turki, Mohamed Faouzi Mimoun","doi":"10.1109/STA50679.2020.9329331","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel MPPT algorithm using a reinforcement learning (RL) to track the Global Maximum Power Point (GMPP) for photovoltaic (PV) applications. The RL MPPT algorithm was validated by simulation studies under Matlab-simulink for a 2.5 kW PV conversion system based on 5*4 PV modules, a DC/DC converter and a resistive Load. In order to enhance the searching ability of proposed MPPT algorithm, a load and irradiation variations are introduced on simulations tests. In particular, a changing of partial shading condition (PSC) is undertaken to change the position and the value of the GMPP a lot of time for improving the efficiency of the algorithm.","PeriodicalId":158545,"journal":{"name":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA50679.2020.9329331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a novel MPPT algorithm using a reinforcement learning (RL) to track the Global Maximum Power Point (GMPP) for photovoltaic (PV) applications. The RL MPPT algorithm was validated by simulation studies under Matlab-simulink for a 2.5 kW PV conversion system based on 5*4 PV modules, a DC/DC converter and a resistive Load. In order to enhance the searching ability of proposed MPPT algorithm, a load and irradiation variations are introduced on simulations tests. In particular, a changing of partial shading condition (PSC) is undertaken to change the position and the value of the GMPP a lot of time for improving the efficiency of the algorithm.
基于强化学习算法的光伏能量转换系统优化
本文提出了一种新的MPPT算法,利用强化学习(RL)来跟踪光伏(PV)应用的全局最大功率点(GMPP)。在Matlab-simulink环境下,对基于5*4光伏模块、DC/DC变换器和阻性负载的2.5 kW光伏转换系统的RL MPPT算法进行了仿真研究。为了提高MPPT算法的搜索能力,在仿真试验中引入了载荷和辐射的变化。其中,为了提高算法的效率,采用了局部遮阳条件(PSC)的改变来多次改变GMPP的位置和值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信