Coexistence and Duality in Competing Species Models

Yu-Ting Chen, Matthias Hammer
{"title":"Coexistence and Duality in Competing Species Models","authors":"Yu-Ting Chen, Matthias Hammer","doi":"10.1142/9789811206092_0001","DOIUrl":null,"url":null,"abstract":"We discuss some stochastic spatial generalizations of the Lotka--Volterra model for competing species. The generalizations take the forms of spin systems on general discrete sets and interacting diffusions on integer lattices. Methods for proving coexistence in these generalizations and some related open questions are discussed. We use duality as the central point of view. It relates coexistence of the models to survival of their dual processes.","PeriodicalId":163241,"journal":{"name":"Genealogies of Interacting Particle Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genealogies of Interacting Particle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811206092_0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss some stochastic spatial generalizations of the Lotka--Volterra model for competing species. The generalizations take the forms of spin systems on general discrete sets and interacting diffusions on integer lattices. Methods for proving coexistence in these generalizations and some related open questions are discussed. We use duality as the central point of view. It relates coexistence of the models to survival of their dual processes.
竞争物种模型中的共存与二元性
我们讨论了Lotka—Volterra竞争物种模型的一些随机空间推广。推广采用一般离散集上的自旋系统和整数格上的相互作用扩散的形式。讨论了这些推广中共存的证明方法和一些相关的开放性问题。我们使用对偶作为中心观点。它将模型的共存与它们的双重过程的生存联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信