Holistic production analysis for actuator manufacturing using data mining

Christian Sand, K. Bogus, Sabrina Kunz, J. Franke
{"title":"Holistic production analysis for actuator manufacturing using data mining","authors":"Christian Sand, K. Bogus, Sabrina Kunz, J. Franke","doi":"10.1109/EDPC.2016.7851346","DOIUrl":null,"url":null,"abstract":"Holistic production optimizations within large-scale productions are not yet used because classic methods like Six Sigma or DoE are less expedient when it comes to huge or more complex data sets. Thus no standardized analysis for integrated production optimization exists, to realize 0 ppm defects. This paper introduces a holistic analytics approach using data mining techniques to reduce the error and scrap rate, addressing experts and non-specialized workers.","PeriodicalId":121418,"journal":{"name":"2016 6th International Electric Drives Production Conference (EDPC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Electric Drives Production Conference (EDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPC.2016.7851346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Holistic production optimizations within large-scale productions are not yet used because classic methods like Six Sigma or DoE are less expedient when it comes to huge or more complex data sets. Thus no standardized analysis for integrated production optimization exists, to realize 0 ppm defects. This paper introduces a holistic analytics approach using data mining techniques to reduce the error and scrap rate, addressing experts and non-specialized workers.
基于数据挖掘的致动器制造整体生产分析
大规模生产中的整体生产优化尚未使用,因为六西格玛或DoE等经典方法在涉及大型或更复杂的数据集时不太方便。因此,没有标准化的分析集成生产优化存在,以实现0 ppm的缺陷。本文介绍了一种使用数据挖掘技术的整体分析方法,以减少错误和废品率,针对专家和非专业工人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信