Probabilistic orientation field estimation for fingerprint enhancement and verification

Kuang-chih Lee, S. Prabhakar
{"title":"Probabilistic orientation field estimation for fingerprint enhancement and verification","authors":"Kuang-chih Lee, S. Prabhakar","doi":"10.1109/BSYM.2008.4655521","DOIUrl":null,"url":null,"abstract":"We present a novel probabilistic method to estimate the orientation field in fingerprint images. Traditional approach based on the smoothing of local image gradients usually generates unsatisfactory results in poor quality regions of fingerprint images. We show how to improve the orientation field estimation by first constructing a Markov random field (MRF) and then inferring the orientation field from the MRF model. The MRF is made up of two components. The first component incorporates a global mixture model of orientation fields learned from training fingerprint examples. The second component enforces a smoothness constraint over the orientation field in the neighboring regions. The improved fingerprint orientation field is useful in fingerprint enhancement and minutiae extraction processes. We show remarkable improvement of fingerprint verification accuracy on a relatively large fingerprint dataset based on the proposed approach.","PeriodicalId":389538,"journal":{"name":"2008 Biometrics Symposium","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSYM.2008.4655521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We present a novel probabilistic method to estimate the orientation field in fingerprint images. Traditional approach based on the smoothing of local image gradients usually generates unsatisfactory results in poor quality regions of fingerprint images. We show how to improve the orientation field estimation by first constructing a Markov random field (MRF) and then inferring the orientation field from the MRF model. The MRF is made up of two components. The first component incorporates a global mixture model of orientation fields learned from training fingerprint examples. The second component enforces a smoothness constraint over the orientation field in the neighboring regions. The improved fingerprint orientation field is useful in fingerprint enhancement and minutiae extraction processes. We show remarkable improvement of fingerprint verification accuracy on a relatively large fingerprint dataset based on the proposed approach.
指纹增强与验证的概率方向场估计
提出了一种新的估计指纹图像方向场的概率方法。传统的基于局部图像梯度平滑的方法在指纹图像质量较差的区域往往效果不理想。我们展示了如何通过首先构造一个马尔可夫随机场(MRF),然后从MRF模型推断方向场来改进方向场估计。磁流变仪由两部分组成。第一个组件结合了从训练指纹样本中学习到的方向场的全局混合模型。第二个组件对相邻区域的方向场施加平滑约束。改进后的指纹方向场可用于指纹增强和细节提取。在相对较大的指纹数据集上,该方法显著提高了指纹验证的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信