Xin Guo, Bin Zhu, Luisa F. Polanía, C. Boncelet, K. Barner
{"title":"Group-Level Emotion Recognition Using Hybrid Deep Models Based on Faces, Scenes, Skeletons and Visual Attentions","authors":"Xin Guo, Bin Zhu, Luisa F. Polanía, C. Boncelet, K. Barner","doi":"10.1145/3242969.3264990","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid deep learning network submitted to the 6th Emotion Recognition in the Wild (EmotiW 2018) Grand Challenge [9], in the category of group-level emotion recognition. Advanced deep learning models trained individually on faces, scenes, skeletons and salient regions using visual attention mechanisms are fused to classify the emotion of a group of people in an image as positive, neutral or negative. Experimental results show that the proposed hybrid network achieves 78.98% and 68.08% classification accuracy on the validation and testing sets, respectively. These results outperform the baseline of 64% and 61%, and achieved the first place in the challenge.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3264990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
This paper presents a hybrid deep learning network submitted to the 6th Emotion Recognition in the Wild (EmotiW 2018) Grand Challenge [9], in the category of group-level emotion recognition. Advanced deep learning models trained individually on faces, scenes, skeletons and salient regions using visual attention mechanisms are fused to classify the emotion of a group of people in an image as positive, neutral or negative. Experimental results show that the proposed hybrid network achieves 78.98% and 68.08% classification accuracy on the validation and testing sets, respectively. These results outperform the baseline of 64% and 61%, and achieved the first place in the challenge.