Group-Level Emotion Recognition Using Hybrid Deep Models Based on Faces, Scenes, Skeletons and Visual Attentions

Xin Guo, Bin Zhu, Luisa F. Polanía, C. Boncelet, K. Barner
{"title":"Group-Level Emotion Recognition Using Hybrid Deep Models Based on Faces, Scenes, Skeletons and Visual Attentions","authors":"Xin Guo, Bin Zhu, Luisa F. Polanía, C. Boncelet, K. Barner","doi":"10.1145/3242969.3264990","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid deep learning network submitted to the 6th Emotion Recognition in the Wild (EmotiW 2018) Grand Challenge [9], in the category of group-level emotion recognition. Advanced deep learning models trained individually on faces, scenes, skeletons and salient regions using visual attention mechanisms are fused to classify the emotion of a group of people in an image as positive, neutral or negative. Experimental results show that the proposed hybrid network achieves 78.98% and 68.08% classification accuracy on the validation and testing sets, respectively. These results outperform the baseline of 64% and 61%, and achieved the first place in the challenge.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3264990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This paper presents a hybrid deep learning network submitted to the 6th Emotion Recognition in the Wild (EmotiW 2018) Grand Challenge [9], in the category of group-level emotion recognition. Advanced deep learning models trained individually on faces, scenes, skeletons and salient regions using visual attention mechanisms are fused to classify the emotion of a group of people in an image as positive, neutral or negative. Experimental results show that the proposed hybrid network achieves 78.98% and 68.08% classification accuracy on the validation and testing sets, respectively. These results outperform the baseline of 64% and 61%, and achieved the first place in the challenge.
基于人脸、场景、骨架和视觉注意的混合深度模型的群体级情感识别
本文提出了一个混合深度学习网络,提交给第六届野外情绪识别(EmotiW 2018)大挑战[9],属于群体级情绪识别类别。先进的深度学习模型使用视觉注意机制对人脸、场景、骨骼和突出区域进行单独训练,将图像中一群人的情绪分为积极、中性或消极。实验结果表明,该混合网络在验证集和测试集上的分类准确率分别达到78.98%和68.08%。这些结果超过了64%和61%的基线,并在挑战中获得了第一名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信