Extended hybrid statistical tools ANFIS- GA to optimize underwater friction stir welding process parameters for ultimate tensile strength amelioration

Ibrahim Raad S. Sabry, N. E. El-Zathry, F. T. E. Given, M. A. Ghaffar
{"title":"Extended hybrid statistical tools ANFIS- GA to optimize underwater friction stir welding process parameters for ultimate tensile strength amelioration","authors":"Ibrahim Raad S. Sabry, N. E. El-Zathry, F. T. E. Given, M. A. Ghaffar","doi":"10.1109/NILES53778.2021.9600552","DOIUrl":null,"url":null,"abstract":"The qualities of functional parts produced by underwater friction stir welding (UWFSW) with additive water are significantly reliant on standard FSW process parameters. To improve the goal function, hybrid statistical tools can be used to optimize operation parameters. This work investigates the tensile strength(σUTS) of tests ASTM D638-14 specified parts manufactured using UWFSW by Al AA 6063-T6 material. Three parameters were varied in the fabrication of test specimens: speed of rotation from 1000 to 1800 rpm, speed of traveling from 4 to 10 mm/s, and shoulder diameter from 10 to 20 mm. Using a Hybrid artificial neural network- genetic algorithm (ANN-GA) and Hybrid artificial neural network-fuzzy-genetic algorithm (ANFIS-GA). The ANFIS-GA achieved the highest precision of 98.99 %, resulting in optimum parameters like rotational speed 1800 rpm, travelling speed 4 mm/s, and shoulder diameter 15 mm to produce a maximum tensile strength of 266 MPa. The hybrid models developed could be used to predict and maximize specific process parameters and impacts for a variety of industrial situations.","PeriodicalId":249153,"journal":{"name":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES53778.2021.9600552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The qualities of functional parts produced by underwater friction stir welding (UWFSW) with additive water are significantly reliant on standard FSW process parameters. To improve the goal function, hybrid statistical tools can be used to optimize operation parameters. This work investigates the tensile strength(σUTS) of tests ASTM D638-14 specified parts manufactured using UWFSW by Al AA 6063-T6 material. Three parameters were varied in the fabrication of test specimens: speed of rotation from 1000 to 1800 rpm, speed of traveling from 4 to 10 mm/s, and shoulder diameter from 10 to 20 mm. Using a Hybrid artificial neural network- genetic algorithm (ANN-GA) and Hybrid artificial neural network-fuzzy-genetic algorithm (ANFIS-GA). The ANFIS-GA achieved the highest precision of 98.99 %, resulting in optimum parameters like rotational speed 1800 rpm, travelling speed 4 mm/s, and shoulder diameter 15 mm to produce a maximum tensile strength of 266 MPa. The hybrid models developed could be used to predict and maximize specific process parameters and impacts for a variety of industrial situations.
扩展混合统计工具ANFIS- GA优化水下搅拌摩擦焊工艺参数,提高极限拉伸强度
添加水的水下搅拌摩擦焊生产的功能部件的质量很大程度上取决于搅拌摩擦焊的标准工艺参数。为了改进目标函数,可以使用混合统计工具对操作参数进行优化。本文研究了Al AA 6063-T6材料UWFSW制造的ASTM D638-14规定零件的抗拉强度(σUTS)。在试件的制作过程中,有三个参数变化:旋转速度从1000到1800 rpm,移动速度从4到10 mm/s,肩直径从10到20 mm。采用人工神经网络-遗传混合算法(ANN-GA)和人工神经网络-模糊遗传混合算法(anfiss - ga)。anfiss - ga达到了98.99%的最高精度,产生了最佳参数,如转速1800转/分钟,移动速度4毫米/秒,肩直径15毫米,产生266兆帕的最大抗拉强度。所开发的混合模型可用于预测和最大化各种工业情况下的特定工艺参数和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信