Finite dimensional controller design via the largest robust stability radius

Su Zhu
{"title":"Finite dimensional controller design via the largest robust stability radius","authors":"Su Zhu","doi":"10.1109/SSST.1990.138178","DOIUrl":null,"url":null,"abstract":"Consideration is given to the space of transfer matrices with entries in the quotient field of H-infinity, in which the gap metric is defined. The largest robust stability radius of a transfer matrix is defined as the radius of the largest ball centered at the transfer matrix which can be stabilized by a single controller. There are two schemes presented for designing finite dimensional stabilizing controllers by means of the largest robust stability radius. Both schemes guarantee that the finite dimensional controllers stabilize the original infinite dimensional system. Moreover, the closed-loop response can be estimated.<<ETX>>","PeriodicalId":201543,"journal":{"name":"[1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1990.138178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Consideration is given to the space of transfer matrices with entries in the quotient field of H-infinity, in which the gap metric is defined. The largest robust stability radius of a transfer matrix is defined as the radius of the largest ball centered at the transfer matrix which can be stabilized by a single controller. There are two schemes presented for designing finite dimensional stabilizing controllers by means of the largest robust stability radius. Both schemes guarantee that the finite dimensional controllers stabilize the original infinite dimensional system. Moreover, the closed-loop response can be estimated.<>
有限维控制器设计通过最大鲁棒稳定半径
考虑具有h -∞商域中元素的转移矩阵空间,在该空间中定义了间隙度量。传递矩阵的最大鲁棒稳定半径定义为以传递矩阵为中心的最大球的半径,该球可以被单个控制器稳定。提出了两种基于最大鲁棒稳定半径的有限维稳定控制器设计方案。两种方案都保证了有限维控制器对原无限维系统的稳定性。此外,还可以估计出闭环响应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信