Parallel pattern recognition computations within a wireless sensor network

Asad I. Khan, P. Mihailescu
{"title":"Parallel pattern recognition computations within a wireless sensor network","authors":"Asad I. Khan, P. Mihailescu","doi":"10.1109/ICPR.2004.1334332","DOIUrl":null,"url":null,"abstract":"The computational properties of a wireless sensor network (WSN) have been investigated by implementing a fully distributed pattern recognition algorithm within the network. It is shown that the set up allows a physical object to develop a capability, which to some extent may be considered similar to our sense of touch, with the WSN acting as an artificial nervous system in this regard. The effectiveness of the algorithm is inspected by comparing the outputs from the sensors with the stress patterns generated through a simple finite element model and then stored within the network. It is shown that the test object could successfully differentiate between its internal stress states resulting from the changes to its external loading conditions. Suitability of the algorithm is discussed with respect to the data storage requirement per node of the WSN.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

The computational properties of a wireless sensor network (WSN) have been investigated by implementing a fully distributed pattern recognition algorithm within the network. It is shown that the set up allows a physical object to develop a capability, which to some extent may be considered similar to our sense of touch, with the WSN acting as an artificial nervous system in this regard. The effectiveness of the algorithm is inspected by comparing the outputs from the sensors with the stress patterns generated through a simple finite element model and then stored within the network. It is shown that the test object could successfully differentiate between its internal stress states resulting from the changes to its external loading conditions. Suitability of the algorithm is discussed with respect to the data storage requirement per node of the WSN.
无线传感器网络中的并行模式识别计算
通过在无线传感器网络中实现一种全分布式模式识别算法,研究了无线传感器网络的计算特性。研究表明,这种设置允许物理对象发展一种能力,在某种程度上可以被认为类似于我们的触觉,在这方面,WSN充当了一个人工神经系统。通过将传感器的输出与通过简单的有限元模型生成的应力模式进行比较,然后将应力模式存储在网络中,从而检查算法的有效性。结果表明,试验对象能够成功地区分由外部加载条件变化引起的内应力状态。针对无线传感器网络各节点的数据存储需求,讨论了该算法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信