G. Golovin, Shouyuan Chen, N. Powers, Cheng Liu, S. Banerjee, Jun Zhang, M. Zeng, Z. Sheng, D. Umstadter
{"title":"Independent control of laser wakefield-accelerated electron-beam parameters","authors":"G. Golovin, Shouyuan Chen, N. Powers, Cheng Liu, S. Banerjee, Jun Zhang, M. Zeng, Z. Sheng, D. Umstadter","doi":"10.1117/12.2182707","DOIUrl":null,"url":null,"abstract":"By employing a pair of partially overlapped supersonic gas jets, we separated injection and acceleration stages of laser wakefield acceleration to produce stable, monoenergetic, and tunable electron beams. The first jet (injector) utilized a He/N2 mixture and resulted in electrons injected into the wake via ionization-assisted injection. These electrons were then accelerated in the second jet (accelerator) using pure He. By changing length and plasma density of the accelerator jet, we were able to tune electron energy in the 50 – 300 MeV range with energy spread of 10-30% and 20 pC charge. Simulations show that the injection region is limited within the overlap of the jets.","PeriodicalId":347374,"journal":{"name":"Europe Optics + Optoelectronics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europe Optics + Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2182707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
By employing a pair of partially overlapped supersonic gas jets, we separated injection and acceleration stages of laser wakefield acceleration to produce stable, monoenergetic, and tunable electron beams. The first jet (injector) utilized a He/N2 mixture and resulted in electrons injected into the wake via ionization-assisted injection. These electrons were then accelerated in the second jet (accelerator) using pure He. By changing length and plasma density of the accelerator jet, we were able to tune electron energy in the 50 – 300 MeV range with energy spread of 10-30% and 20 pC charge. Simulations show that the injection region is limited within the overlap of the jets.