Boosting Interactive Image Segmentation by Exploiting Semantic Clues

Qiaoqiao Wei, Hui Zhang, J. Yong
{"title":"Boosting Interactive Image Segmentation by Exploiting Semantic Clues","authors":"Qiaoqiao Wei, Hui Zhang, J. Yong","doi":"10.1109/ICME55011.2023.00026","DOIUrl":null,"url":null,"abstract":"This paper presents a refinement framework for enhancing the accuracy of interactive image segmentation by exploiting all available semantic clues. Interactive image segmentation iteratively improves segmentation masks using an input image and user annotations. The information available in this process ranges from low-level visual features like colors and textures to high-level semantic information, such as user annotations and segmentation results. Despite tremendous efforts to segment the overall object shapes, existing methods underutilize the available semantic clues, causing unsatisfactory boundary quality for segmentation masks. The proposed framework first extracts confidence guidance maps, then suppresses and lifts the predicted probabilities for confident pixels, and finally utilizes color similarities as bases and prediction confidence as guidance to refine the segmentation boundaries. Experimental results demonstrate that the framework has a low computational cost and significantly boosts existing methods on standard benchmarks.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a refinement framework for enhancing the accuracy of interactive image segmentation by exploiting all available semantic clues. Interactive image segmentation iteratively improves segmentation masks using an input image and user annotations. The information available in this process ranges from low-level visual features like colors and textures to high-level semantic information, such as user annotations and segmentation results. Despite tremendous efforts to segment the overall object shapes, existing methods underutilize the available semantic clues, causing unsatisfactory boundary quality for segmentation masks. The proposed framework first extracts confidence guidance maps, then suppresses and lifts the predicted probabilities for confident pixels, and finally utilizes color similarities as bases and prediction confidence as guidance to refine the segmentation boundaries. Experimental results demonstrate that the framework has a low computational cost and significantly boosts existing methods on standard benchmarks.
利用语义线索增强交互式图像分割
本文提出了一种改进框架,利用所有可用的语义线索来提高交互式图像分割的准确性。交互式图像分割迭代改进分割蒙版使用输入图像和用户注释。此过程中可用的信息范围从颜色和纹理等低级视觉特征到用户注释和分割结果等高级语义信息。尽管在分割整体物体形状方面付出了巨大的努力,但现有的方法没有充分利用可用的语义线索,导致分割蒙版的边界质量不理想。该框架首先提取置信指导图,然后对置信像素的预测概率进行抑制和提升,最后以颜色相似度为基础,以预测置信度为指导来细化分割边界。实验结果表明,该框架具有较低的计算成本,并且在标准基准测试中显著提高了现有方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信