Color Separation Echelon Gratings

M. Stern, G. Swanson
{"title":"Color Separation Echelon Gratings","authors":"M. Stern, G. Swanson","doi":"10.1364/domo.1996.dwb.2","DOIUrl":null,"url":null,"abstract":"Color discrimination by wavelength bands has a large number of military and commercial applications. In the infrared portion of the spectrum, wavelength separation allows better temperature discrimination of thermally emissive objects. [1] In the visible portion of the spectrum, a device which separates white light into red, green, and blue wavebands without loss of energy could increase the efficiency of color sensors. An echelon-like grating structure [2,3] separates electromagnetic radiation of different wavelengths according to diffraction order rather than by dispersion within one diffraction order as would be the case for a conventional prism-type grating, as shown schematically in Figure 1.","PeriodicalId":301804,"journal":{"name":"Diffractive Optics and Micro-Optics","volume":"13 6A 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffractive Optics and Micro-Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/domo.1996.dwb.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Color discrimination by wavelength bands has a large number of military and commercial applications. In the infrared portion of the spectrum, wavelength separation allows better temperature discrimination of thermally emissive objects. [1] In the visible portion of the spectrum, a device which separates white light into red, green, and blue wavebands without loss of energy could increase the efficiency of color sensors. An echelon-like grating structure [2,3] separates electromagnetic radiation of different wavelengths according to diffraction order rather than by dispersion within one diffraction order as would be the case for a conventional prism-type grating, as shown schematically in Figure 1.
分色梯级光栅
波长波段的颜色识别有大量的军事和商业应用。在光谱的红外部分,波长分离允许对热辐射物体进行更好的温度识别。[1]在光谱的可见部分,一种将白光分成红、绿、蓝三个波段而不损失能量的装置可以提高颜色传感器的效率。阶梯形光栅结构[2,3]根据衍射阶分离不同波长的电磁辐射,而不是像传统的棱镜型光栅那样通过一个衍射阶内的色散来分离,如图1所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信