Dissipative Linear Stochastic Hamiltonian Systems*

I. Vladimirov, I. Petersen
{"title":"Dissipative Linear Stochastic Hamiltonian Systems*","authors":"I. Vladimirov, I. Petersen","doi":"10.1109/ANZCC.2018.8606559","DOIUrl":null,"url":null,"abstract":"This paper is concerned with stochastic Hamiltonian systems which model a class of open dynamical systems subject to random external forces. Their dynamics are governed by Ito stochastic differential equations whose structure is specified by a Hamiltonian, viscous damping parameters and system-environment coupling functions. We consider energy balance relations for such systems with an emphasis on linear stochastic Hamiltonian (LSH) systems with quadratic Hamiltonians and linear coupling. For LSH systems, we also discuss stability conditions, the structure of the invariant measure and its relation with stochastic versions of the virial theorem. Using Lyapunov functions, organised as deformed Hamiltonians, dissipation relations are also considered for LSH systems driven by statistically uncertain external forces. An application of these results to feedback connections of LSH systems is outlined.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with stochastic Hamiltonian systems which model a class of open dynamical systems subject to random external forces. Their dynamics are governed by Ito stochastic differential equations whose structure is specified by a Hamiltonian, viscous damping parameters and system-environment coupling functions. We consider energy balance relations for such systems with an emphasis on linear stochastic Hamiltonian (LSH) systems with quadratic Hamiltonians and linear coupling. For LSH systems, we also discuss stability conditions, the structure of the invariant measure and its relation with stochastic versions of the virial theorem. Using Lyapunov functions, organised as deformed Hamiltonians, dissipation relations are also considered for LSH systems driven by statistically uncertain external forces. An application of these results to feedback connections of LSH systems is outlined.
耗散线性随机哈密顿系统*
本文研究一类受随机外力作用的开放动力系统的随机哈密顿系统。它们的动力学由Ito随机微分方程控制,该方程的结构由哈密顿量、粘性阻尼参数和系统-环境耦合函数指定。我们考虑这类系统的能量平衡关系,重点研究具有二次哈密顿量和线性耦合的线性随机哈密顿(LSH)系统。对于LSH系统,我们还讨论了稳定性条件、不变测度的结构及其与维里定理的随机版本的关系。利用李雅普诺夫函数,组织成变形哈密顿量,还考虑了由统计不确定外力驱动的LSH系统的耗散关系。本文概述了这些结果在LSH系统反馈连接中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信