Electrical sintering of inkjet-printed silver electrode for c-Si solar cells

Y. Moon, S. Lee, Heuiseok Kang, K. Kang, Ki Young Kim, J. Hwang, Youngjune Cho
{"title":"Electrical sintering of inkjet-printed silver electrode for c-Si solar cells","authors":"Y. Moon, S. Lee, Heuiseok Kang, K. Kang, Ki Young Kim, J. Hwang, Youngjune Cho","doi":"10.1109/PVSC.2011.6186135","DOIUrl":null,"url":null,"abstract":"Electrical sintering of the front electrode for crystalline silicon solar cells was performed applying a constant DC current to the printed lines. Conducting lines were printed on glass substrate by a drop-on-demand (DOD) inkjet printer and silver nanoparticle ink. Specific resistance and microstructure of sintered silver lines and were measured with varying DC current. To find the relation between temperatue increase with changing applied cuurent and specific resistance, temperature elevation was also calculated. Sintering process finished within a few milliseconds. Increasing applied DC current, specific resistance decreased and grain size increased after sintering. Achieved minimum specific resistance is approximately 1.7 times higher than specific resistance of the bulk silver.","PeriodicalId":373149,"journal":{"name":"2011 37th IEEE Photovoltaic Specialists Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 37th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2011.6186135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Electrical sintering of the front electrode for crystalline silicon solar cells was performed applying a constant DC current to the printed lines. Conducting lines were printed on glass substrate by a drop-on-demand (DOD) inkjet printer and silver nanoparticle ink. Specific resistance and microstructure of sintered silver lines and were measured with varying DC current. To find the relation between temperatue increase with changing applied cuurent and specific resistance, temperature elevation was also calculated. Sintering process finished within a few milliseconds. Increasing applied DC current, specific resistance decreased and grain size increased after sintering. Achieved minimum specific resistance is approximately 1.7 times higher than specific resistance of the bulk silver.
c-Si太阳能电池用喷墨印刷银电极的电烧结研究
在印刷线上施加恒定直流电流,对晶体硅太阳能电池的前电极进行电烧结。采用按需喷墨打印机和纳米银颗粒油墨在玻璃基板上打印导线。在不同直流电流条件下,测量了烧结银线的比电阻和显微组织。为了找出温度升高随外加电流和比电阻变化的关系,还计算了温度升高。烧结过程在几毫秒内完成。增大直流电流,烧结后比电阻减小,晶粒尺寸增大。所获得的最小比电阻约为体银比电阻的1.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信