Comparison of sequence- and structure-based protein-protein interaction sites

K. Dick, J. Green
{"title":"Comparison of sequence- and structure-based protein-protein interaction sites","authors":"K. Dick, J. Green","doi":"10.1109/EMBSISC.2016.7508605","DOIUrl":null,"url":null,"abstract":"Computational protein-protein interaction (PPI) prediction is a diverse field with multiple paradigms generating insightful interaction interface information. The shortcomings of one approach are often the strength of another and establishing the agreement between methodologies is valuable for the development of novel PPI prediction techniques. This study represents the first large-scale comparison of PPI sites determined through a sequence-based method (PIPE-Sites) and a structure-based method (PiSITEs). A set of interactions (n = 3,109) amenable to analysis by both methods was examined. Interestingly, the distributions of the sizes of the predicted interaction sites have similar means and identical median values. Using the Sorensen-Dice similarity coefficient and independent randomization testing, we determined the degree of agreement of the predicted sites of interaction for both methods to be statistically significant (p <; 0.001). Finally, applying the hypergeometric test and Q-Analysis, we identified 491 interactions with significantly heightened agreement (p <; 0.002). These interactions represent a broad range of biological function including transcriptional regulation, cell proliferation, cytoskeletal dynamics, and apoptosis. These findings corroborate the joint application of these paradigms for future PPI prediction studies.","PeriodicalId":361773,"journal":{"name":"2016 IEEE EMBS International Student Conference (ISC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE EMBS International Student Conference (ISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBSISC.2016.7508605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Computational protein-protein interaction (PPI) prediction is a diverse field with multiple paradigms generating insightful interaction interface information. The shortcomings of one approach are often the strength of another and establishing the agreement between methodologies is valuable for the development of novel PPI prediction techniques. This study represents the first large-scale comparison of PPI sites determined through a sequence-based method (PIPE-Sites) and a structure-based method (PiSITEs). A set of interactions (n = 3,109) amenable to analysis by both methods was examined. Interestingly, the distributions of the sizes of the predicted interaction sites have similar means and identical median values. Using the Sorensen-Dice similarity coefficient and independent randomization testing, we determined the degree of agreement of the predicted sites of interaction for both methods to be statistically significant (p <; 0.001). Finally, applying the hypergeometric test and Q-Analysis, we identified 491 interactions with significantly heightened agreement (p <; 0.002). These interactions represent a broad range of biological function including transcriptional regulation, cell proliferation, cytoskeletal dynamics, and apoptosis. These findings corroborate the joint application of these paradigms for future PPI prediction studies.
基于序列和结构的蛋白质-蛋白质相互作用位点的比较
计算蛋白质-蛋白质相互作用(PPI)预测是一个多元化的领域,具有多种范式,可以产生深刻的相互作用界面信息。一种方法的缺点往往是另一种方法的优点,建立方法之间的一致性对于开发新的PPI预测技术是有价值的。该研究首次对基于序列的方法(PIPE-Sites)和基于结构的方法(PiSITEs)确定的PPI位点进行了大规模比较。一组相互作用(n = 3,109)可通过两种方法进行分析。有趣的是,预测的相互作用位点的大小分布具有相似的平均值和相同的中位数。使用Sorensen-Dice相似系数和独立随机化检验,我们确定两种方法预测的相互作用位点的一致程度具有统计学显著性(p <;0.001)。最后,应用超几何检验和q分析,我们确定了491个相互作用,显著提高了一致性(p <;0.002)。这些相互作用代表了广泛的生物学功能,包括转录调节、细胞增殖、细胞骨架动力学和细胞凋亡。这些发现证实了这些范式在未来PPI预测研究中的联合应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信