On generalized fuzzy BF-Algebras

A. Hadipour
{"title":"On generalized fuzzy BF-Algebras","authors":"A. Hadipour","doi":"10.1109/FUZZY.2009.5277295","DOIUrl":null,"url":null,"abstract":"By two reletions belonging to (∊) and quasi-coincidence (q) between fuzzy points and fuzzy sets, we define the concept of (α, β)-fuzzy subalgebras where α, ß are any two of {∊, q, ∊ Vq, ∊ ∧q} with α ≢ ∊ ∧q. We state and prove some theorems in (α, β)-fuzzy BF-algebras.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

By two reletions belonging to (∊) and quasi-coincidence (q) between fuzzy points and fuzzy sets, we define the concept of (α, β)-fuzzy subalgebras where α, ß are any two of {∊, q, ∊ Vq, ∊ ∧q} with α ≢ ∊ ∧q. We state and prove some theorems in (α, β)-fuzzy BF-algebras.
关于广义模糊bf -代数
通过模糊点与模糊集之间属于()和拟重合()的两个关系,定义了(α, β)-模糊子代数的概念,其中α, β是{,q, Vq,∧q}中的任意两个,α∧q。给出并证明了(α, β)-模糊bf -代数中的一些定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信