Min-Max Model Predictive Control for Uncertain Max-Min-Plus-Scaling Systems

I. Necoara, B. Schutter, T. Boom, H. Hellendoorn
{"title":"Min-Max Model Predictive Control for Uncertain Max-Min-Plus-Scaling Systems","authors":"I. Necoara, B. Schutter, T. Boom, H. Hellendoorn","doi":"10.1080/00207170601094404","DOIUrl":null,"url":null,"abstract":"We extend the model predictive control (MPC) framework that has been developed previously to a class of uncertain discrete event systems that can be modeled using the operations maximization, minimization, addition and scalar multiplication. This class encompasses max-plus-linear systems, min-max-plus systems, bilinear max-plus systems and polynomial max-plus systems. We first consider open-loop min-max MPC and we show that the resulting optimization problem can be transformed into a set of linear programming problems. Then, min-max feedback model predictive control using disturbance feedback policies is presented, which leads to improved performance compared to the open-loop approach","PeriodicalId":285315,"journal":{"name":"2006 8th International Workshop on Discrete Event Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th International Workshop on Discrete Event Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00207170601094404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We extend the model predictive control (MPC) framework that has been developed previously to a class of uncertain discrete event systems that can be modeled using the operations maximization, minimization, addition and scalar multiplication. This class encompasses max-plus-linear systems, min-max-plus systems, bilinear max-plus systems and polynomial max-plus systems. We first consider open-loop min-max MPC and we show that the resulting optimization problem can be transformed into a set of linear programming problems. Then, min-max feedback model predictive control using disturbance feedback policies is presented, which leads to improved performance compared to the open-loop approach
不确定max - min - plus尺度系统的Min-Max模型预测控制
我们将先前开发的模型预测控制(MPC)框架扩展到一类不确定离散事件系统,该系统可以使用操作最大化,最小化,加法和标量乘法进行建模。本课程包括最大+线性系统,最小-最大+系统,双线性最大+系统和多项式最大+系统。我们首先考虑开环最小最大MPC,并证明由此产生的优化问题可以转化为一组线性规划问题。然后,提出了采用扰动反馈策略的最小-最大反馈模型预测控制,与开环方法相比,性能得到了提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信