Analysis of patient outcome using ECG and extreme learning machine ensemble

Nan Liu, Jiuwen Cao, Z. Koh, Zhiping Lin, M. Ong
{"title":"Analysis of patient outcome using ECG and extreme learning machine ensemble","authors":"Nan Liu, Jiuwen Cao, Z. Koh, Zhiping Lin, M. Ong","doi":"10.1109/ICDSP.2015.7252038","DOIUrl":null,"url":null,"abstract":"In an acute healthcare setting, the process of assessing severity and assigning appropriate priority of treatment for large numbers of patients is important. Therefore, accurate analysis systems for patient outcome prediction are needed. In this paper, an extreme learning machine (ELM) ensemble based prognosis system is presented for predicting mortality with heart rate variability (HRV) and clinical vital signs. A segment method is implemented to calculate several sets of HRV measures from non-overlapped electrocardiogram segments for each patient and a decision is made through the ELM ensemble.","PeriodicalId":216293,"journal":{"name":"2015 IEEE International Conference on Digital Signal Processing (DSP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2015.7252038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In an acute healthcare setting, the process of assessing severity and assigning appropriate priority of treatment for large numbers of patients is important. Therefore, accurate analysis systems for patient outcome prediction are needed. In this paper, an extreme learning machine (ELM) ensemble based prognosis system is presented for predicting mortality with heart rate variability (HRV) and clinical vital signs. A segment method is implemented to calculate several sets of HRV measures from non-overlapped electrocardiogram segments for each patient and a decision is made through the ELM ensemble.
利用心电图和极限学习机集成分析患者预后
在急性医疗保健环境中,评估严重程度并为大量患者分配适当的优先治疗过程非常重要。因此,需要准确的分析系统来预测患者的预后。本文提出了一种基于极限学习机(ELM)集成的基于心率变异性(HRV)和临床生命体征的死亡率预测系统。采用分段法,从每个患者的非重叠心电图段中计算出几组HRV测量值,并通过ELM集合进行决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信