Optimizing data analytics in energy constrained IoT networks

Apostolos Galanopoulos, G. Iosifidis, T. Salonidis
{"title":"Optimizing data analytics in energy constrained IoT networks","authors":"Apostolos Galanopoulos, G. Iosifidis, T. Salonidis","doi":"10.23919/WIOPT.2018.8362855","DOIUrl":null,"url":null,"abstract":"The emergence of delay sensitive and computationally demanding data analytic applications has burdened the core network with huge data transfers and increased computation load. Furthermore, the increasing number of Internet of Things deployments rely significantly on the execution of such applications. We propose an architecture where devices collaboratively execute data analytic tasks in order to improve their execution delay and accuracy. This is possible by exploiting the aggregate computation capabilities of the abundance of small devices. We design an optimization framework where the nodes decide where their data analytic tasks will be executed, in order to jointly optimize their average execution delay and accuracy, while respecting power consumption constraints. We propose a distributed dual ascent solution to the formulated convex problem, so that the nodes can make the outsourcing decisions by exchanging local information. The results indicate that the nodes can achieve better performance when collaborating than when they locally compute the tasks, depending on the network load.","PeriodicalId":231395,"journal":{"name":"2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2018.8362855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The emergence of delay sensitive and computationally demanding data analytic applications has burdened the core network with huge data transfers and increased computation load. Furthermore, the increasing number of Internet of Things deployments rely significantly on the execution of such applications. We propose an architecture where devices collaboratively execute data analytic tasks in order to improve their execution delay and accuracy. This is possible by exploiting the aggregate computation capabilities of the abundance of small devices. We design an optimization framework where the nodes decide where their data analytic tasks will be executed, in order to jointly optimize their average execution delay and accuracy, while respecting power consumption constraints. We propose a distributed dual ascent solution to the formulated convex problem, so that the nodes can make the outsourcing decisions by exchanging local information. The results indicate that the nodes can achieve better performance when collaborating than when they locally compute the tasks, depending on the network load.
优化能源受限物联网网络中的数据分析
延迟敏感、计算量高的数据分析应用的出现,给核心网络带来了巨大的数据传输负担,增加了计算负荷。此外,越来越多的物联网部署在很大程度上依赖于这些应用程序的执行。我们提出了一种架构,其中设备协同执行数据分析任务,以提高其执行延迟和准确性。这可以通过利用大量小型设备的聚合计算能力来实现。我们设计了一个优化框架,由节点决定其数据分析任务的执行位置,在尊重功耗约束的情况下,共同优化其平均执行延迟和准确性。我们提出了一种分布式对偶上升的方法来解决公式化凸问题,使得节点之间通过交换本地信息来进行外包决策。结果表明,根据网络负载的不同,节点协作比本地计算任务可以获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信