Scholarly Document Information Extraction using Extensible Features for Efficient Higher Order Semi-CRFs

Cuong V Nguyen, Muthu Kumar Chandrasekaran, Min-Yen Kan, Wee Sun Lee
{"title":"Scholarly Document Information Extraction using Extensible Features for Efficient Higher Order Semi-CRFs","authors":"Cuong V Nguyen, Muthu Kumar Chandrasekaran, Min-Yen Kan, Wee Sun Lee","doi":"10.1145/2756406.2756946","DOIUrl":null,"url":null,"abstract":"We address the tasks of recovering bibliographic and document structure metadata from scholarly documents. We leverage higher order semi-Markov conditional random fields to model long-distance label sequences, improving upon the performance of the linear-chain conditional random field model. We introduce the notion of extensible features, which allows the expensive inference process to be simplified through memoization, resulting in lower computational complexity. Our method significantly betters the state-of-the-art on three related scholarly document extraction tasks.","PeriodicalId":256118,"journal":{"name":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2756406.2756946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We address the tasks of recovering bibliographic and document structure metadata from scholarly documents. We leverage higher order semi-Markov conditional random fields to model long-distance label sequences, improving upon the performance of the linear-chain conditional random field model. We introduce the notion of extensible features, which allows the expensive inference process to be simplified through memoization, resulting in lower computational complexity. Our method significantly betters the state-of-the-art on three related scholarly document extraction tasks.
基于可扩展特征的高阶半crfs学术文献信息提取
我们解决了从学术文献中恢复书目和文档结构元数据的任务。我们利用高阶半马尔可夫条件随机场来建模长距离标签序列,改进了线性链条件随机场模型的性能。我们引入了可扩展特征的概念,它允许通过记忆简化昂贵的推理过程,从而降低计算复杂度。我们的方法在三个相关的学术文档提取任务上显著提高了技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信