{"title":"Classifying tilting modules over the Auslander algebras of radical square zero Nakayama algebras","authors":"Xiaojin Zhang","doi":"10.1142/s0219498822500414","DOIUrl":null,"url":null,"abstract":"Let $\\Lambda$ be a radical square zero Nakayama algebra with $n$ simple modules and let $\\Gamma$ be the Auslander algebra of $\\Lambda$. Then every indecomposable direct summand of a tilting $\\Gamma$-module is either simple or projective. Moreover, if $\\Lambda$ is self-injective, then the number of tilting $\\Gamma$-modules is $2^n$; otherwise, the number of tilting $\\Gamma$-modules is $2^{n-1}$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498822500414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Let $\Lambda$ be a radical square zero Nakayama algebra with $n$ simple modules and let $\Gamma$ be the Auslander algebra of $\Lambda$. Then every indecomposable direct summand of a tilting $\Gamma$-module is either simple or projective. Moreover, if $\Lambda$ is self-injective, then the number of tilting $\Gamma$-modules is $2^n$; otherwise, the number of tilting $\Gamma$-modules is $2^{n-1}$.