{"title":"Minimum Storage Rack-Aware Regenerating Codes with Exact Repair and Small Sub-Packetization","authors":"Hanxu Hou, P. Lee, Y. Han","doi":"10.1109/ISIT44484.2020.9174461","DOIUrl":null,"url":null,"abstract":"Modern data centers often organize storage nodes in racks, in which the cross-rack communication cost is typically much higher than the intra-rack communication cost. Rack-aware regenerating codes have recently been proposed to achieve the optimal trade-off between storage redundancy and cross-rack repair bandwidth, subject to the condition that the original data can be reconstructed from a sufficient number of any non-failed nodes. In this paper, we present a coding framework that transforms any minimum-storage regenerating (MSR) code to a minimum-storage rack-aware regenerating (MSRR) code, such that the cross-rack repair bandwidth is minimized subject to the minimum storage redundancy. To this end, we can construct a family of exact-repair constructions for the MSRR codes for all admissible parameters. Furthermore, our constructions achieve low sub-packetization, which is critical for mitigating the I/O overhead during repair.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Modern data centers often organize storage nodes in racks, in which the cross-rack communication cost is typically much higher than the intra-rack communication cost. Rack-aware regenerating codes have recently been proposed to achieve the optimal trade-off between storage redundancy and cross-rack repair bandwidth, subject to the condition that the original data can be reconstructed from a sufficient number of any non-failed nodes. In this paper, we present a coding framework that transforms any minimum-storage regenerating (MSR) code to a minimum-storage rack-aware regenerating (MSRR) code, such that the cross-rack repair bandwidth is minimized subject to the minimum storage redundancy. To this end, we can construct a family of exact-repair constructions for the MSRR codes for all admissible parameters. Furthermore, our constructions achieve low sub-packetization, which is critical for mitigating the I/O overhead during repair.