{"title":"Prototyping symbolic execution engines for interpreted languages","authors":"Stefan Bucur, Johannes Kinder, George Candea","doi":"10.1145/2541940.2541977","DOIUrl":null,"url":null,"abstract":"Symbolic execution is being successfully used to automatically test statically compiled code. However, increasingly more systems and applications are written in dynamic interpreted languages like Python. Building a new symbolic execution engine is a monumental effort, and so is keeping it up-to-date as the target language evolves. Furthermore, ambiguous language specifications lead to their implementation in a symbolic execution engine potentially differing from the production interpreter in subtle ways. We address these challenges by flipping the problem and using the interpreter itself as a specification of the language semantics. We present a recipe and tool (called Chef) for turning a vanilla interpreter into a sound and complete symbolic execution engine. Chef symbolically executes the target program by symbolically executing the interpreter's binary while exploiting inferred knowledge about the program's high-level structure. Using Chef, we developed a symbolic execution engine for Python in 5 person-days and one for Lua in 3 person-days. They offer complete and faithful coverage of language features in a way that keeps up with future language versions at near-zero cost. Chef-produced engines are up to 1000 times more performant than if directly executing the interpreter symbolically without Chef.","PeriodicalId":128805,"journal":{"name":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541940.2541977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
Symbolic execution is being successfully used to automatically test statically compiled code. However, increasingly more systems and applications are written in dynamic interpreted languages like Python. Building a new symbolic execution engine is a monumental effort, and so is keeping it up-to-date as the target language evolves. Furthermore, ambiguous language specifications lead to their implementation in a symbolic execution engine potentially differing from the production interpreter in subtle ways. We address these challenges by flipping the problem and using the interpreter itself as a specification of the language semantics. We present a recipe and tool (called Chef) for turning a vanilla interpreter into a sound and complete symbolic execution engine. Chef symbolically executes the target program by symbolically executing the interpreter's binary while exploiting inferred knowledge about the program's high-level structure. Using Chef, we developed a symbolic execution engine for Python in 5 person-days and one for Lua in 3 person-days. They offer complete and faithful coverage of language features in a way that keeps up with future language versions at near-zero cost. Chef-produced engines are up to 1000 times more performant than if directly executing the interpreter symbolically without Chef.