Compressed Sensing using sparse binary measurements: A rateless coding perspective

D. Vukobratović, D. Sejdinovic, A. Pižurica
{"title":"Compressed Sensing using sparse binary measurements: A rateless coding perspective","authors":"D. Vukobratović, D. Sejdinovic, A. Pižurica","doi":"10.1109/SPAWC.2015.7227005","DOIUrl":null,"url":null,"abstract":"Compressed Sensing (CS) methods using sparse binary measurement matrices and iterative message-passing recovery procedures have been recently investigated due to their low computational complexity and excellent performance. Drawing much of inspiration from sparse-graph codes such as Low-Density Parity-Check (LDPC) codes, these studies use analytical tools from modern coding theory to analyze CS solutions. In this paper, we consider and systematically analyze the CS setup inspired by a class of efficient, popular and flexible sparse-graph codes called rateless codes. The proposed rateless CS setup is asymptotically analyzed using tools such as Density Evolution and EXIT charts and fine-tuned using degree distribution optimization techniques.","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compressed Sensing (CS) methods using sparse binary measurement matrices and iterative message-passing recovery procedures have been recently investigated due to their low computational complexity and excellent performance. Drawing much of inspiration from sparse-graph codes such as Low-Density Parity-Check (LDPC) codes, these studies use analytical tools from modern coding theory to analyze CS solutions. In this paper, we consider and systematically analyze the CS setup inspired by a class of efficient, popular and flexible sparse-graph codes called rateless codes. The proposed rateless CS setup is asymptotically analyzed using tools such as Density Evolution and EXIT charts and fine-tuned using degree distribution optimization techniques.
使用稀疏二值测量的压缩感知:无速率编码的视角
使用稀疏二值测量矩阵和迭代消息传递恢复过程的压缩感知(CS)方法由于其低计算复杂度和优异的性能而受到近年来的研究。从稀疏图代码(如低密度奇偶校验(LDPC)代码)中汲取灵感,这些研究使用现代编码理论的分析工具来分析CS解决方案。在本文中,我们考虑并系统地分析了一类高效、流行和灵活的被称为无速率码的稀疏图码所启发的CS设置。提出的无速率CS设置使用密度演化和EXIT图等工具进行渐近分析,并使用度分布优化技术进行微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信