PCA-based Seeding for Improved Vector Quantization

G. Knittel, R. Parys
{"title":"PCA-based Seeding for Improved Vector Quantization","authors":"G. Knittel, R. Parys","doi":"10.5220/0001808100960099","DOIUrl":null,"url":null,"abstract":"We propose a new method for finding initial codevectors for vector quantization. It is based on Principal Component Analysis and uses error-directed subdivision of the eigenspace in reduced dimensionality. Additionally, however, we include shape-directed split decisions based on eigenvalue ratios to improve the visual appearance. The method achieves about the same image quality as the well-known k-means++ method, while providing some global control over compression priorities.","PeriodicalId":231479,"journal":{"name":"International Conference on Imaging Theory and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Imaging Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0001808100960099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a new method for finding initial codevectors for vector quantization. It is based on Principal Component Analysis and uses error-directed subdivision of the eigenspace in reduced dimensionality. Additionally, however, we include shape-directed split decisions based on eigenvalue ratios to improve the visual appearance. The method achieves about the same image quality as the well-known k-means++ method, while providing some global control over compression priorities.
基于pca的矢量量化改进算法
提出了一种求矢量量化初始协矢量的新方法。它基于主成分分析,并在降维中使用特征空间的误差导向细分。此外,我们还包括基于特征值比率的形状导向分割决策,以改善视觉外观。该方法实现了与著名的k-means++方法相同的图像质量,同时提供了对压缩优先级的一些全局控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信