Explainable Deep Learning for Non-Invasive Detection of Pulmonary Artery Hypertension from Heart Sounds

Alex Gaudio, Miguel Coimbra, A. Campilho, A. Smailagic, S. Schmidt, F. Renna
{"title":"Explainable Deep Learning for Non-Invasive Detection of Pulmonary Artery Hypertension from Heart Sounds","authors":"Alex Gaudio, Miguel Coimbra, A. Campilho, A. Smailagic, S. Schmidt, F. Renna","doi":"10.22489/CinC.2022.295","DOIUrl":null,"url":null,"abstract":"Late diagnoses of patients affected by pulmonary artery hypertension (PH) have a poor outcome. This observation has led to a call for earlier, non-invasive PH detection. Cardiac auscultation offers a non-invasive and cost-effective alternative to both right heart catheterization and doppler analysis in analysis of PH. We propose to detect PH via analysis of digital heart sound recordings with over-parameterized deep neural networks. In contrast with previous approaches in the literature, we assess the impact of a pre-processing step aiming to separate S2 sound into the aortic (A2) and pulmonary (P2) components. We obtain an area under the ROC curve of. 95, improving over our adaptation of a state-of-the-art Gaussian mixture model PH detector by +.17. Post-hoc explanations and analysis show that the availability of separated A2 and P2 components contributes significantly to prediction. Analysis of stethoscope heart sound recordings with deep networks is an effective, low-cost and non-invasive solution for the detection of pulmonary hypertension.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Late diagnoses of patients affected by pulmonary artery hypertension (PH) have a poor outcome. This observation has led to a call for earlier, non-invasive PH detection. Cardiac auscultation offers a non-invasive and cost-effective alternative to both right heart catheterization and doppler analysis in analysis of PH. We propose to detect PH via analysis of digital heart sound recordings with over-parameterized deep neural networks. In contrast with previous approaches in the literature, we assess the impact of a pre-processing step aiming to separate S2 sound into the aortic (A2) and pulmonary (P2) components. We obtain an area under the ROC curve of. 95, improving over our adaptation of a state-of-the-art Gaussian mixture model PH detector by +.17. Post-hoc explanations and analysis show that the availability of separated A2 and P2 components contributes significantly to prediction. Analysis of stethoscope heart sound recordings with deep networks is an effective, low-cost and non-invasive solution for the detection of pulmonary hypertension.
可解释的深度学习对心音肺动脉高压的无创检测
肺动脉高压(PH)患者的晚期诊断预后较差。这一观察结果引发了对早期非侵入性PH检测的呼吁。在分析PH值时,心脏听诊为右心导管插入术和多普勒分析提供了一种无创且具有成本效益的替代方法。我们建议通过使用过度参数化的深度神经网络分析数字心音记录来检测PH值。与文献中先前的方法相比,我们评估了旨在将S2音分离为主动脉(A2)和肺动脉(P2)分量的预处理步骤的影响。的ROC曲线下的面积。95,比我们最先进的高斯混合模型PH检测器的适应性提高了+.17。事后解释和分析表明,分离的A2和P2组分的可用性对预测有重要贡献。深层网络听诊器心音记录分析是一种有效、低成本、无创的肺动脉高压检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信