Tensor Virtualization Technique to Support Efficient Data Reorganization for CNN Accelerators

Donghyun Kang, S. Ha
{"title":"Tensor Virtualization Technique to Support Efficient Data Reorganization for CNN Accelerators","authors":"Donghyun Kang, S. Ha","doi":"10.1109/DAC18072.2020.9218726","DOIUrl":null,"url":null,"abstract":"There is a growing need for data reorganization in recent neural networks for various applications such as Generative Adversarial Networks(GANs) that use transposed convolution and U-Net that requires upsampling. We propose a novel technique, called tensor virtualization technique, to perform data reorganization efficiently with a minimal hardware addition for adder-tree based CNN accelerators. In the proposed technique, a data reorganization request is specified with a few parameters and data reorganization is performed in the virtual space without overhead in the physical memory. It allows existing adder-tree-based CNN accelerators to accelerate a wide range of neural networks that require data reorganization, including U-Net, DCGAN, and SRGAN.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing need for data reorganization in recent neural networks for various applications such as Generative Adversarial Networks(GANs) that use transposed convolution and U-Net that requires upsampling. We propose a novel technique, called tensor virtualization technique, to perform data reorganization efficiently with a minimal hardware addition for adder-tree based CNN accelerators. In the proposed technique, a data reorganization request is specified with a few parameters and data reorganization is performed in the virtual space without overhead in the physical memory. It allows existing adder-tree-based CNN accelerators to accelerate a wide range of neural networks that require data reorganization, including U-Net, DCGAN, and SRGAN.
支持CNN加速器高效数据重组的张量虚拟化技术
在最近的各种应用中,神经网络对数据重组的需求越来越大,例如使用转置卷积的生成对抗网络(GANs)和需要上采样的U-Net。我们提出了一种新的技术,称为张量虚拟化技术,以最小的硬件添加来有效地执行基于加法器树的CNN加速器的数据重组。在该技术中,通过少量参数指定数据重组请求,并在虚拟空间中执行数据重组,而不会增加物理内存的开销。它允许现有的基于加法器树的CNN加速器加速各种需要数据重组的神经网络,包括U-Net、DCGAN和SRGAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信