Stochastic Filtration for Moving Intensity of Poisson Flow with Random Jumps at Random Moments

O. A. Shorin, A. Shorin, G. O. Bokk
{"title":"Stochastic Filtration for Moving Intensity of Poisson Flow with Random Jumps at Random Moments","authors":"O. A. Shorin, A. Shorin, G. O. Bokk","doi":"10.1109/SYNCHROINFO49631.2020.9166038","DOIUrl":null,"url":null,"abstract":"A wide range of events in Queuing networks, stock exchanges, and automatic systems can be described by a Poisson flow model with changing intensity that undergoes random jumps at a priori unknown moments. The direct solution of the identification problem in such conditions leads to algorithms with exponential complexity. An asymptotically optimal ML filtering algorithm for observed Poisson flow with polynomial computational complexity is proposed. It is shown that the optimal estimates of the moments of jumps must coincide with one of the moments of the observed events.","PeriodicalId":255578,"journal":{"name":"2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNCHROINFO49631.2020.9166038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A wide range of events in Queuing networks, stock exchanges, and automatic systems can be described by a Poisson flow model with changing intensity that undergoes random jumps at a priori unknown moments. The direct solution of the identification problem in such conditions leads to algorithms with exponential complexity. An asymptotically optimal ML filtering algorithm for observed Poisson flow with polynomial computational complexity is proposed. It is shown that the optimal estimates of the moments of jumps must coincide with one of the moments of the observed events.
随机时刻随机跳变泊松流运动强度的随机滤波
排队网络、证券交易所和自动系统中的各种事件都可以用泊松流模型来描述,泊松流模型具有变化的强度,在先验的未知时刻经历随机跳跃。在这种情况下辨识问题的直接解导致算法具有指数复杂度。提出了一种计算复杂度为多项式的观测泊松流渐近最优ML滤波算法。结果表明,跳跃矩的最优估计必须与观测事件的一个矩相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信