Blind Nonlinear Channel Equalization Using Kernel Processing

Xiu-kai Ruan, Zhi-Yong Zhang
{"title":"Blind Nonlinear Channel Equalization Using Kernel Processing","authors":"Xiu-kai Ruan, Zhi-Yong Zhang","doi":"10.1109/CISP.2009.5303961","DOIUrl":null,"url":null,"abstract":"Blind nonlinear channel equalization using kernel processing is proposed, which transforms blind equalization of nonlinear channel to formulate as a convex quadratic programming using kernel processing. The novel method acquires the optimal solution by solving a set of linear equations instead of solving a convex quadratic programming problem. It is shown the kernel processing equalization by adopting Gaussian cost function has several merit, such as: 1) The quadratic programming problem solved at each iteration is convex and has a globally optimal solution. 2) It avoids the difficulty of choosing the suitable parameters of the kernel function to obtain the satisfied blind equalization performance. 3) It need only 20% data samples of support vector machines (SVM) method to obtain the same blind equalization performance. 4) It is more robust for more nonlinear channels.","PeriodicalId":263281,"journal":{"name":"2009 2nd International Congress on Image and Signal Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Congress on Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2009.5303961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Blind nonlinear channel equalization using kernel processing is proposed, which transforms blind equalization of nonlinear channel to formulate as a convex quadratic programming using kernel processing. The novel method acquires the optimal solution by solving a set of linear equations instead of solving a convex quadratic programming problem. It is shown the kernel processing equalization by adopting Gaussian cost function has several merit, such as: 1) The quadratic programming problem solved at each iteration is convex and has a globally optimal solution. 2) It avoids the difficulty of choosing the suitable parameters of the kernel function to obtain the satisfied blind equalization performance. 3) It need only 20% data samples of support vector machines (SVM) method to obtain the same blind equalization performance. 4) It is more robust for more nonlinear channels.
基于核处理的盲非线性信道均衡
提出了一种基于核处理的非线性信道盲均衡方法,将非线性信道盲均衡转化为基于核处理的凸二次规划。该方法通过求解一组线性方程而不是求解凸二次规划问题来获得最优解。结果表明,采用高斯代价函数的核处理均衡化方法具有以下优点:1)每次迭代求解的二次规划问题是凸的,具有全局最优解;2)避免了选择合适的核函数参数的困难,以获得满意的盲均衡性能。3)支持向量机(SVM)方法只需要20%的数据样本就可以获得相同的盲均衡性能。4)对更多的非线性信道具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信