M-CTRL: A Continual Representation Learning Framework with Slowly Improving Past Pre-Trained Model

Jin-Seong Choi, Jaehwan Lee, Chae-Won Lee, Joon‐Hyuk Chang
{"title":"M-CTRL: A Continual Representation Learning Framework with Slowly Improving Past Pre-Trained Model","authors":"Jin-Seong Choi, Jaehwan Lee, Chae-Won Lee, Joon‐Hyuk Chang","doi":"10.1109/ICASSP49357.2023.10096793","DOIUrl":null,"url":null,"abstract":"Representation models pre-trained on unlabeled data show competitive performance in speech recognition, even when fine-tuned on small amounts of labeled data. The continual representation learning (CTRL) framework combines pre-training and continual learning methods to obtain powerful representation. CTRL relies on two neural networks, online and offline models, where the fixed latter model transfers information to the former model with continual learning loss. In this paper, we present momentum continual representation learning (M-CTRL), a framework that slowly updates the offline model with an exponential moving average of the online model. Our framework aims to capture information from the offline model improved on past and new domains. To evaluate our framework, we continually pre-train wav2vec 2.0 with M-CTRL in the following order: Librispeech, Wall Street Journal, and TED-LIUM V3. Our experiments demonstrate that M-CTRL improves the performance in the new domain and reduces information loss in the past domain compared to CTRL.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Representation models pre-trained on unlabeled data show competitive performance in speech recognition, even when fine-tuned on small amounts of labeled data. The continual representation learning (CTRL) framework combines pre-training and continual learning methods to obtain powerful representation. CTRL relies on two neural networks, online and offline models, where the fixed latter model transfers information to the former model with continual learning loss. In this paper, we present momentum continual representation learning (M-CTRL), a framework that slowly updates the offline model with an exponential moving average of the online model. Our framework aims to capture information from the offline model improved on past and new domains. To evaluate our framework, we continually pre-train wav2vec 2.0 with M-CTRL in the following order: Librispeech, Wall Street Journal, and TED-LIUM V3. Our experiments demonstrate that M-CTRL improves the performance in the new domain and reduces information loss in the past domain compared to CTRL.
M-CTRL:一个具有缓慢改进过去预训练模型的持续表示学习框架
在未标记数据上预先训练的表示模型在语音识别中表现出竞争力,即使在少量标记数据上进行微调。持续表征学习(CTRL)框架结合了预训练和持续学习的方法来获得强大的表征。CTRL依赖于两种神经网络,在线和离线模型,固定的后一种模型将信息传递给前一种模型,学习损失不断。在本文中,我们提出了动量连续表示学习(M-CTRL),这是一个使用在线模型的指数移动平均缓慢更新离线模型的框架。我们的框架旨在从过去和新领域改进的离线模型中捕获信息。为了评估我们的框架,我们持续使用M-CTRL按以下顺序预训练wav2vec 2.0: librisspeech、Wall Street Journal和TED-LIUM V3。我们的实验表明,与CTRL相比,M-CTRL提高了新域的性能,减少了过去域的信息丢失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信