Levels of discontinuity, limit-computability, and jump operators

Matthew de Brecht
{"title":"Levels of discontinuity, limit-computability, and jump operators","authors":"Matthew de Brecht","doi":"10.1515/9781614518044.79","DOIUrl":null,"url":null,"abstract":"We develop a general theory of jump operators, which is intended to provide an abstraction of the notion of \"limit-computability\" on represented spaces. Jump operators also provide a framework with a strong categorical flavor for investigating degrees of discontinuity of functions and hierarchies of sets on represented spaces. We will provide a thorough investigation within this framework of a hierarchy of $\\Delta^0_2$-measurable functions between arbitrary countably based $T_0$-spaces, which captures the notion of computing with ordinal mind-change bounds. Our abstract approach not only raises new questions but also sheds new light on previous results. For example, we introduce a notion of \"higher order\" descriptive set theoretical objects, we generalize a recent characterization of the computability theoretic notion of \"lowness\" in terms of adjoint functors, and we show that our framework encompasses ordinal quantifications of the non-constructiveness of Hilbert's finite basis theorem.","PeriodicalId":359337,"journal":{"name":"Logic, Computation, Hierarchies","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic, Computation, Hierarchies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9781614518044.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We develop a general theory of jump operators, which is intended to provide an abstraction of the notion of "limit-computability" on represented spaces. Jump operators also provide a framework with a strong categorical flavor for investigating degrees of discontinuity of functions and hierarchies of sets on represented spaces. We will provide a thorough investigation within this framework of a hierarchy of $\Delta^0_2$-measurable functions between arbitrary countably based $T_0$-spaces, which captures the notion of computing with ordinal mind-change bounds. Our abstract approach not only raises new questions but also sheds new light on previous results. For example, we introduce a notion of "higher order" descriptive set theoretical objects, we generalize a recent characterization of the computability theoretic notion of "lowness" in terms of adjoint functors, and we show that our framework encompasses ordinal quantifications of the non-constructiveness of Hilbert's finite basis theorem.
不连续级别、极限可计算性和跳转操作符
我们发展了跳跃算子的一般理论,其目的是在表示空间上提供“极限可计算性”概念的抽象。跳转操作符还提供了一个具有强烈分类风格的框架,用于研究函数的不连续程度和表示空间上集合的层次结构。我们将在这个框架内对任意基于可数的$T_0$-空间之间的$\Delta^0_2$-可测量函数的层次结构进行彻底的研究,它捕获了使用有序思维变化边界计算的概念。我们的抽象方法不仅提出了新的问题,而且对以前的结果有了新的认识。例如,我们引入了一个“高阶”描述性集合理论对象的概念,我们推广了最近关于伴随函子的“低度”可计算理论概念的表征,并且我们证明了我们的框架包含了希尔伯特有限基定理的非构造性的有序量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信