A PHP and JSP Web Shell Detection System With Text Processing Based On Machine Learning

Han Zhang, Ming Liu, Zihan Yue, Zhi Xue, Yong-yu Shi, Xiangjian He
{"title":"A PHP and JSP Web Shell Detection System With Text Processing Based On Machine Learning","authors":"Han Zhang, Ming Liu, Zihan Yue, Zhi Xue, Yong-yu Shi, Xiangjian He","doi":"10.1109/TrustCom50675.2020.00219","DOIUrl":null,"url":null,"abstract":"Web shell is one of the most common network attack methods, and traditional detection methods may not detect complex and flexible variants of web shell attacks. In this paper, we present a comprehensive detection system that can detect both PHP and JSP web shells. After file classification, we use different feature extraction methods, i.e. AST for PHP files and bytecode for JSP files. We present a detection model based on text processing methods including TF-IDF and Word2vec algorithms. We combine different kinds of machine learning algorithms and perform a comprehensively controlled experiment. After the experiment and evaluation, we choose the detection machine learning model of the best performance, which can achieve a high detection accuracy above 98%.","PeriodicalId":221956,"journal":{"name":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TrustCom50675.2020.00219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Web shell is one of the most common network attack methods, and traditional detection methods may not detect complex and flexible variants of web shell attacks. In this paper, we present a comprehensive detection system that can detect both PHP and JSP web shells. After file classification, we use different feature extraction methods, i.e. AST for PHP files and bytecode for JSP files. We present a detection model based on text processing methods including TF-IDF and Word2vec algorithms. We combine different kinds of machine learning algorithms and perform a comprehensively controlled experiment. After the experiment and evaluation, we choose the detection machine learning model of the best performance, which can achieve a high detection accuracy above 98%.
基于机器学习的文本处理Web Shell检测系统
Web shell是最常见的网络攻击方式之一,传统的检测方法可能无法检测到复杂灵活的Web shell攻击变体。在本文中,我们提出了一个可以同时检测PHP和JSP web shell的综合检测系统。文件分类后,我们使用不同的特征提取方法,即PHP文件使用AST, JSP文件使用字节码。我们提出了一个基于文本处理方法的检测模型,包括TF-IDF和Word2vec算法。我们结合了不同的机器学习算法,并进行了全面的控制实验。经过实验和评估,我们选择了性能最好的检测机器学习模型,该模型可以达到98%以上的高检测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信