Trajectory Matching and Classification of Video Moving Objects

Jiang-bin Zheng, D. Feng, R. Zhao
{"title":"Trajectory Matching and Classification of Video Moving Objects","authors":"Jiang-bin Zheng, D. Feng, R. Zhao","doi":"10.1109/MMSP.2005.248553","DOIUrl":null,"url":null,"abstract":"Trajectory matching is an important way to describe and classify behaviors of moving objects in a computer visual system. In this paper, we present two trajectory description methods, time-sampling sequence and space-sampling sequence, which can be used in different matching applications. We then propose two general trajectory matching schemes based on Levenshtein distance and relaxation matching respectively. Trajectory Levenshtein distance scheme is a good way to compare the topological shapes and directions of trajectories, and can be performed quickly. Trajectory relaxation matching scheme can gain the statistical optimal matching. Finally, we propose a top-to-bottom hierarchical clustering algorithm to classify trajectories, and several experiments demonstrate that our schemes are efficient in matching and classifying different shape and direction trajectories","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"506 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Trajectory matching is an important way to describe and classify behaviors of moving objects in a computer visual system. In this paper, we present two trajectory description methods, time-sampling sequence and space-sampling sequence, which can be used in different matching applications. We then propose two general trajectory matching schemes based on Levenshtein distance and relaxation matching respectively. Trajectory Levenshtein distance scheme is a good way to compare the topological shapes and directions of trajectories, and can be performed quickly. Trajectory relaxation matching scheme can gain the statistical optimal matching. Finally, we propose a top-to-bottom hierarchical clustering algorithm to classify trajectories, and several experiments demonstrate that our schemes are efficient in matching and classifying different shape and direction trajectories
视频运动目标的轨迹匹配与分类
在计算机视觉系统中,轨迹匹配是描述和分类运动目标行为的重要方法。本文提出了两种轨迹描述方法:时间采样序列和空间采样序列,可用于不同的匹配应用。然后分别提出了两种基于Levenshtein距离和弛豫匹配的通用轨迹匹配方案。轨迹Levenshtein距离格式是一种比较轨迹拓扑形状和方向的好方法,可以快速实现。轨迹松弛匹配方案可以获得统计最优匹配。最后,我们提出了一种自上而下的分层聚类算法来对轨迹进行分类,实验表明,我们的算法对不同形状和方向的轨迹进行匹配和分类是有效的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信