Recognition of epilepsy from non-seizure electroencephalogram using combination of linear SVM and time domain attributes

Debanshu Bhowmick, Atrija Singh, S. Sanyal
{"title":"Recognition of epilepsy from non-seizure electroencephalogram using combination of linear SVM and time domain attributes","authors":"Debanshu Bhowmick, Atrija Singh, S. Sanyal","doi":"10.1109/IC3.2017.8284306","DOIUrl":null,"url":null,"abstract":"Classification of neural disorders, like epilepsy, can be performed efficiently using soft computing methods. Previously many methods of detecting epilepsy using various time and time-frequency domain features have been proposed. Our study proposes a unique feature set, comprising of time domain features, Waveform Length, Root Mean Square, Mean Absolute Value and Zero Crossing, combining them with Linear Support Vector Machine to classify a set of EEG signals into epileptic and non-epileptic under non-seizure condition. Our proposed classification approach yields an accuracy of 95%.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Classification of neural disorders, like epilepsy, can be performed efficiently using soft computing methods. Previously many methods of detecting epilepsy using various time and time-frequency domain features have been proposed. Our study proposes a unique feature set, comprising of time domain features, Waveform Length, Root Mean Square, Mean Absolute Value and Zero Crossing, combining them with Linear Support Vector Machine to classify a set of EEG signals into epileptic and non-epileptic under non-seizure condition. Our proposed classification approach yields an accuracy of 95%.
线性支持向量机与时域属性相结合的非发作性脑电图癫痫识别
神经疾病的分类,如癫痫,可以有效地执行使用软计算方法。以前已经提出了许多利用各种时间和时频域特征检测癫痫的方法。我们的研究提出了一个独特的特征集,包括时域特征、波形长度、均方根、均值绝对值和过零,并结合线性支持向量机将一组非癫痫状态下的脑电图信号分类为癫痫和非癫痫。我们提出的分类方法的准确率为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信