{"title":"Recognition of epilepsy from non-seizure electroencephalogram using combination of linear SVM and time domain attributes","authors":"Debanshu Bhowmick, Atrija Singh, S. Sanyal","doi":"10.1109/IC3.2017.8284306","DOIUrl":null,"url":null,"abstract":"Classification of neural disorders, like epilepsy, can be performed efficiently using soft computing methods. Previously many methods of detecting epilepsy using various time and time-frequency domain features have been proposed. Our study proposes a unique feature set, comprising of time domain features, Waveform Length, Root Mean Square, Mean Absolute Value and Zero Crossing, combining them with Linear Support Vector Machine to classify a set of EEG signals into epileptic and non-epileptic under non-seizure condition. Our proposed classification approach yields an accuracy of 95%.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Classification of neural disorders, like epilepsy, can be performed efficiently using soft computing methods. Previously many methods of detecting epilepsy using various time and time-frequency domain features have been proposed. Our study proposes a unique feature set, comprising of time domain features, Waveform Length, Root Mean Square, Mean Absolute Value and Zero Crossing, combining them with Linear Support Vector Machine to classify a set of EEG signals into epileptic and non-epileptic under non-seizure condition. Our proposed classification approach yields an accuracy of 95%.