Data Mining Approach to Predict Air Pollution in Makassar

Nur Aini, M. S. Mustafa
{"title":"Data Mining Approach to Predict Air Pollution in Makassar","authors":"Nur Aini, M. S. Mustafa","doi":"10.1109/ICORIS50180.2020.9320800","DOIUrl":null,"url":null,"abstract":"Air pollution level in Makassar has increased based on data from 2018 to 2019. There were 646 data obtained from the Ministry of Environment and Forestry data archive through the official site, there as five variables in data training, particulate matter (PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3). Lack of information on air pollution causes the people become unaware on their personal health. There is an effective analysis method for exploring data. This research used knowledge discovery technique in databases in data mining to facilitate decision making. Finally, continuing from the results of previous studies where the prediction of air pollution levels used Naïve Bayes algorithm, this research predicts the level of air pollution using the K-Nearest Neighbor Algorithm to classification data testing and data training with an accuracy rate of 96%, a precision value of 97% and also a recall value of 100%.","PeriodicalId":280589,"journal":{"name":"2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORIS50180.2020.9320800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Air pollution level in Makassar has increased based on data from 2018 to 2019. There were 646 data obtained from the Ministry of Environment and Forestry data archive through the official site, there as five variables in data training, particulate matter (PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3). Lack of information on air pollution causes the people become unaware on their personal health. There is an effective analysis method for exploring data. This research used knowledge discovery technique in databases in data mining to facilitate decision making. Finally, continuing from the results of previous studies where the prediction of air pollution levels used Naïve Bayes algorithm, this research predicts the level of air pollution using the K-Nearest Neighbor Algorithm to classification data testing and data training with an accuracy rate of 96%, a precision value of 97% and also a recall value of 100%.
望加锡市空气污染预测的数据挖掘方法
根据2018年至2019年的数据,望加锡的空气污染水平有所上升。通过官方网站从环境和林业部数据档案中获取了646个数据,数据训练中有5个变量,分别是颗粒物(PM10)、二氧化硫(SO2)、一氧化碳(CO)、二氧化氮(NO2)和臭氧(O3)。缺乏关于空气污染的信息导致人们对自己的个人健康不了解。有一种有效的数据挖掘分析方法。本研究将数据库中的知识发现技术应用于数据挖掘中,以方便决策。最后,在之前使用Naïve贝叶斯算法预测空气污染水平的研究结果的基础上,本研究使用k -最近邻算法对分类数据测试和数据训练进行空气污染水平预测,准确率为96%,精度值为97%,召回率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信