Self-calibration of large scale camera networks

Patrik Goorts, S. Maesen, Yunjun Liu, Maarten Dumont, P. Bekaert, G. Lafruit
{"title":"Self-calibration of large scale camera networks","authors":"Patrik Goorts, S. Maesen, Yunjun Liu, Maarten Dumont, P. Bekaert, G. Lafruit","doi":"10.5220/0005057201070116","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method to calibrate large scale camera networks for multi-camera computer vision applications in sport scenes. The calibration process determines precise camera parameters, both within each camera (focal length, principal point, etc) and in between the cameras (their relative position and orientation). To this end, we first extract candidate image correspondences over adjacent cameras, without using any calibration object, solely relying on existing feature matching computer vision algorithms applied on the input video streams. We then pairwise propagate these camera feature matches over all adjacent cameras using a chained, confident-based voting mechanism and a selection relying on the general displacement across the images. Experiments show that this removes a large amount of outliers before using existing calibration toolboxes dedicated to small scale camera networks, that would otherwise fail to work properly in finding the correct camera parameters over large scale camera networks. We successfully validate our method on real soccer scenes.","PeriodicalId":438702,"journal":{"name":"2014 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005057201070116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we present a method to calibrate large scale camera networks for multi-camera computer vision applications in sport scenes. The calibration process determines precise camera parameters, both within each camera (focal length, principal point, etc) and in between the cameras (their relative position and orientation). To this end, we first extract candidate image correspondences over adjacent cameras, without using any calibration object, solely relying on existing feature matching computer vision algorithms applied on the input video streams. We then pairwise propagate these camera feature matches over all adjacent cameras using a chained, confident-based voting mechanism and a selection relying on the general displacement across the images. Experiments show that this removes a large amount of outliers before using existing calibration toolboxes dedicated to small scale camera networks, that would otherwise fail to work properly in finding the correct camera parameters over large scale camera networks. We successfully validate our method on real soccer scenes.
大规模摄像机网络的自标定
在本文中,我们提出了一种校准运动场景中多摄像机计算机视觉应用的大规模摄像机网络的方法。校准过程确定精确的相机参数,包括每个相机内部(焦距,主点等)和相机之间(它们的相对位置和方向)。为此,我们首先提取相邻摄像机上的候选图像对应关系,不使用任何校准对象,仅依赖于输入视频流上应用的现有特征匹配计算机视觉算法。然后,我们使用链式的、基于信任的投票机制和依赖于图像间一般位移的选择,两两地将这些相机特征匹配传播到所有相邻的相机上。实验表明,在使用现有的专用于小规模摄像机网络的校准工具箱之前,这种方法可以去除大量的异常值,否则这些工具将无法在大规模摄像机网络中找到正确的摄像机参数。我们成功地在真实的足球场景中验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信